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Abstract 
In this review, key processes for the synthesis of greener or more sustainable solvents derived from renewable 
sources (saccharides, lignocellulose and triglycerides) are discussed. It is shown that a series of platform 
chemicals such as glycerol, levulinic acid and furans can be converted into a variety of solvents through catalytic 
transformations that include hydrolysis, esterification, reduction and etherification reactions. It was also 
considered several aspects of each class of solvent regarding performance within the context of the reactions 
or extractions for which it is employed. 
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Introduction 
In the last decades, there has been an increasing effort to reduce the use of petroleum-derived chemicals and 
fuels in order to decrease environmental pollution and to counteract global warming [1,2]. Innovative strategies 
for the sustainable obtaining of these products has focused on using renewable raw materials [3]. Biomass is an 
ideal alternative to fossil resources, being triglycerides, lignocellulose and saccharides the main classes 
of feedstock that can be used for the production of greener biofuels and chemicals [3,4]. The conversion of these 
raw materials into valuable products is usually carried out by subsequent transformations of several biomass 
platform chemicals, such as saccharides (glucose and xylose), polyols (sorbitol, xylitol and glycerol), furans 
(furfural and 5-hydroxymethylfurfural) and organic acids (succinic, levulinic and lactic acids) [5,6]. The great 
advantage of biomass platform chemicals is that they are functionalized compounds, allowing its further 
conversion into more valuable chemicals through a lower number of steps when compared to compounds 
derived from fossil sources, which are essentially unfunctionalized alkanes [4].  
The fine chemical and pharmaceutical industries produce different complex molecules, which usually require 
large amounts of solvent for their synthesis. In addition, extractions and purifications also depend on solvents, 
in which large excesses are needed to achieve suitable product purity. Nonetheless, solvents are essential for 
many chemical processes and have great effects in organic chemical reactions [7–9]. The exceeding consumption 
of non-renewable and toxic solvents poses risks to both human health and the environment. Therefore, biomass-
derived solvents are good candidates to overcome the aforementioned issues [10,11].  
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Biomass-derived solvents starting from platform chemicals could be obtained by several processes, such as 
fermentation, hydrolysis, reduction, etherification or esterification. Examples of these compounds are furfural, 
5-hydroxymethylfurfural, levulinic acid and alkyl levulinates, γ-valerolactone, 1,4-pentanediol, 2-
methyltetrahydrofuran, as well as, glycerol and its derivatives [12]. Besides coming from renewable sources, 
a series of characteristics are required so that a compound can be called green. The concept of green solvents is 
strongly related to the principles of green chemistry that aims to minimize or eliminate the use and generation 
of hazardous substances, while reducing energy consumption and moving toward cleaner and sustainable 
production from renewable sources [1,10]. It is undeniable that a green solvent must reduce health and 
environmental damages; however, there are several evaluation criteria to be considered, including non-toxicity, 
low volatility, high boiling point, biodegradability, easily recycle and ability to dissolve a wide range of compounds 
[12]. In this review, the chemical transformation systems and the solvents properties are critically considered 
in order to call the compounds as green solvents.  
 
Environmental and economic aspects 
The development of new biomass-derived solvent can be assessed by a guide created by Jin et al. [9]. The authors 
proposed a 10-step method, which are (1) identify the conventional solvent to be replaced; (2) select potential 
replacement candidates; (3) in silico modelling properties; (4) identify a green synthetic route; (5) optimize 
solvent production; (6) test physical properties; (7) assess performance and toxicology; (8) techno-economic 
assessment; (9) evaluate solvent greenness and (10) life cycle assessment. This framework is very helpful to 
qualify the new solvent candidate with the required properties of a green solvent and to potentially meet any 
required regulations. It is important to note that intermediate steps involve the careful optimization of synthetic 
pathways, making use of green chemistry principles, consideration of solvent toxicological testing, and final steps 
of more time-consuming life cycle assessment (LCA) studies. The LCA uses data acquired from secondary sources, 
such as databases, literature references and simulations, also, it considers the entire life of the products and raw 
materials [10].  
The chemical industry is claimed to consider renewable sources and the valorization of wastes as the primary 
source of sustainable solvents toward reducing environmental impact [13]. However, some developed methods 
can sometimes be at odds with this goal, because researchers rarely consider the economically and 
environmental effects of scale up the manufacturing processes. There are a number of efficiency considerations 
that rule the viability of using a solvent in a given application, including both application-specific technical factors 
(yield, for example) and process-specific economic factors (solvent cost, for example) [14,15], along with more 
general considerations such as availability, scale, and disposal methods, as well as corrosion, thermal stability 
and toxicity concerns [10].  
The choice of the compound to replace a “non-green” solvent should involve, besides the aforementioned 
factors, its properties in use. In some cases, the “green” solvent could lead to a lower yield of the product and 
create a large amount of waste that require more energy in recovery. That is why, one strategy proposed is to 
recovery and reuse the solvent so the process costs are minimized. Hence, the solvent stability needs to be 
considered in the selection of a substance that it is capable of supporting several consecutive reactions. 
In addition to environmental aspects, the sustainability of a process must involve economic aspects, since the 
cost of the implementation of a new technology can harms the adoption of the process. The requirement to 
change equipment is an issue for industries that aimed to adopt new greener technologies. Also, if it is 
a pharmaceutical industry the process should be able to attend to the regulation demands for final product 
quality [11].  
The wide variety of biomass-derived solvents should be economically sustainable, supplied at competitive prices 
and industry-scale volumes. For these reasons, economic considerations can help to shape technical aspects 
of solvent production in order to make the chemical processes more sustainable. In addition, the solvent must 
have dual roles, as a reagent, lead to higher quality products, reduce the number of synthetic steps, reduce 
byproduct formation and improve product separation [11]. Therefore, the evolution from a traditional linear 
economy to a circular economy is necessary for sustainable production in all future chemical processes 
to advance. The circular economy is related with the recovery and regeneration of resources during process 
design, which consider the application of the biorefinery concept, also, recovery and reuse, minimizes impact 
on ecology and health. Thus, these factors strongly guide the technical and economic decisions in the 
development of engineering projects and in the improvement of existing plants [10,16].  
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Glycerol  
Glycerol or 1,2,3-propanotriol (Fig. 1) is the simplest of the triols, which was discovered in the year 1783 by the 
chemist Carl Wilhelm Scheele through his experiments that reacted naturally occurring oils with alkaline 
materials. From that date, this compound has been used in several applications, notably Alfred Nobel's discovery 
of nitroglycerin production and its adsorption in diatomite, a compound widely used as an explosive and 
popularly known as dynamite [17,18]. 
 

 
Fig. 1. Chemical structure of 1,2,3-propanotriol or glycerol. Source: Authors. 

 
The physical and chemical features of this triol are that it is a sweet-tasting hygroscopic liquid that can form 
azeotropic mixtures and, when pure, it is odorless, colorless, viscous at room temperature and it has a high 
boiling point (290 °C) at atmospheric pressure. Still, glycerol has useful properties to be used as a solvent due to 
high miscibility in water and in short chain alcohols, but as expected its high polarity may have limited application 
since it is insoluble in hydrocarbons, halogenated solvents and aliphatic fatty alcohols [18–21]. 
The large applicability of glycerol as solvent drives the demand for this compound, which can be obtained 
naturally from oils and fats in amounts in the range of 8-14% w w-1. In the case of its industrial production, the 
most well known route is from a fossil propylene source. However, other methods are also used in its synthesis, 
such as sugar fermentation, high-pressure hydrolysis of fat triglycerides, saponification or transesterification 
of triglycerides [17,20]. Among the glycerol obtaining pathways aforementioned, Fig. 2 shows the scheme 
of transesterification of triglycerides, common in biodiesel industry, that has increased its production over the 
years. 

 

 
Fig. 2. Transesterification reaction used for the synthesis of alkyl esters and its coproduct glycerol. Source: Authors. 

 
In 1995, the amount of glycerol obtained by the oil transesterification process for biodiesel production was 
responsible for abandoning of the traditional production routes of this compound, such as from polypropylene. 
This is because glycerol production increased per year, which resulted in a decrease in its prices. Besides that, its 
use can be part of the circular economy issue through its in natura use or obtaining other products with higher 
added value [22]. 
In the case of glycerol without modification, some studies have shown that it can be efficiently used as solvent 
to accelerate some synthesis processes, because in addition to being biodegradable and highly hydrophilic, 
glycerol is widely available, inexpensive and do not require special manipulation and storage. It is also considered 
a green solvent that has low vapor pressure, polarity similar to dimethylsulfoxide (DMSO) and 
dimethylformamide (DMF) and dielectric constant of 42.5 (at 25 °C), which is compatible with most inorganic, 
acids, bases, organic compounds and enzymes that are poorly soluble in water [23–25]. In contrast, the 
purification of compound is easiest by simple extraction because different hydrophobic solvents, such as ethers 
and hydrocarbons, which are immiscible in glycerol [23–26].  
Since glycerol forms crystals at <17.8 °C, its application as solvent is limited in low temperatures. Thus, depending 
on the reaction temperature, the choice of glycerol as a solvent may not be suitable, because at temperatures 
below 60 °C, this liquid is viscous and may hinder the phase transfer in the system [27]. Between of advantages, 
this green solvent could be used at high reaction temperatures without enhances the system pressure. 
Moreover, the products separation process can be feasible by distillation due to the high boiling point of glycerol 
or by liquid extraction when hydrophobic compounds are applied in the reaction. Due to its high versatility, 
glycerol is used in over 2000 industrial applications, the most important being in the pharmaceutical sector as an 
additive for the manufacture of personal care products (e.g. toothpaste) and cosmetics. Furthermore, because 
of its safety LD 50 (oral rat) = 12600 mg kg-1, it is a good choice as solvent for application in product carefully 
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controlled. In addition, it can be widely used as a food sweetening additive, as a tobacco wetting agent, in the 
production of fuel and soap additives, pulp and paper manufactures and through its functionalization can be 
obtained alkyl esters, polyethers and resins [17,25]. 
After Wolfson’s group reported the first work that efficiently explored reactions like Suzuki, Heck and 
hydrogenation using glycerol as solvent in 2006, many researches are involved in the use of this compound [24]. 
Jérome et al. [28] applied glycerol as a solvent in aza-Michael reactions between amines and β-unsaturated 
compounds to obtain β-amino acids. The authors observed that glycerol can act at the system interface by 
accelerating the rate of reaction possibly by transition state solvation and tolerating more hydrophobic 
compounds in relation to reactions that employ water as a solvent. For instance, the reaction of p-anisidine with 
butyl acrylate at 100 °C during 20 h showed a yield increase from 5% to 82% by replacing water by glycerol as 
solvent. 
Radatz et al. [29] carried out condensation reaction of o-phenylenediamine with several ketones and aldehydes 
to produce benzodiazepines and benzimidazoles using glycerol as solvent. Initially, the reactions performed in 
the absence of glycerol were unsuccessful and using glycerol at room temperature achieved only 20% yield in 24 
h. The problem not mentioned by authors was the poor mass transfer of glycerol in room temperature that 
probably limited the contact between reactants. However, by employing temperatures of 60 °C and 90 °C, 
in which this problem is negligible, yields of up to 97% of the isolated product was attained in 4 h. In addition, 
product recovery was performed with simple liquid-liquid extraction using ethyl acetate/hexane and glycerol was 
only vacuum dried and reused for 4 cycles without significant yield losses. Several other studies demonstrate the 
application of glycerol as a viable solvent in synthesis processes [24,30]. 
A reaction aqueous medium containing glycerol was used by Meyer et al. [31] for metallaelectro-catalyzed C–H 
activation. Usually, this reaction is made by applying costly and toxic oxidants, besides that fossil-derived 
compounds as showed in C–H/N–H alkyne annulation [32]. So, in the Meyer et al. [31], the authors performed 
the same reaction using glycerol that has a better conductivity in relation to other usual solvents such as of this 
reaction. In Fig. 3 it is demonstrated the scheme of this process, where glycerol/H2O proved to be a good solvent 
system in organic electrochemistry achieving 96% yield in the best condition. That was the first work reporting 
electro-enabled C-H activation using biomass-derived glycerol.  

 

 
Fig. 3. Process of organic electrochemistry to C-H activation under solar and wind energy. Adapted from Source: [31].  

 
Deep eutectic solvents (DES) using glycerol were reported by Li et al. [33] that studied the cellulose extraction 
from Okara by the use of three different complexing agents, choline salts in oxalic acid, in glycerol and in urea, 
via one-pot system. In this study, the authors investigated the structure and the properties of cellulose 
nanofibers obtained. Under the same homogenization conditions on a solid to liquid ratio of 1:20, at 100 °C for 
30–120 min, with a stirring speed of 40 r min-1, the deep eutectic solvents prepared with glycerol and Choline 
Chloride was more favorable for homogenization treatment. Therefore, it was suggested that this route has 
potential to replace the traditional pretreatment process, mainly because it is fast and improves the 
pretreatment efficiency, concomitant with the decrease of environmental pollution. 
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Due to the properties of glycerol, which evaporates without decomposition [34], reactions have been carried out 
in microwaves and ultrasound to convert it into other compounds or using directly it as a solvent [23]. Balaraman 
and Rathnasamy [35] performed the extraction of quail eggs immunoglobulins by chromatography with specific 
deep eutectic solvents. Such solvents were synthesized using quaternary ammonium salts (bond hydrogen 
acceptor) and glycerol (bond hydrogen donor). After this, an ultrasound assisted liquid-liquid microextraction 
was performed and higher density solvents presented the highest extraction capacity. The authors achieved 
through the response surface graph built that 65 mg mL-1 (85% yield) could be recovered in the optimal condition 
of 12 min three-dimensional ultrasound at 35 °C with DES concentration of 85% (v v-1) and sample load of 75 mg 
mL-1. Despite using glycerol for the synthesis of DES, the work involved the use of irritable and toxic compounds 
(benzyltrimethylammonium chloride), in addition to do not mention the solvent reuse, which is important in the 
green chemistry concept. 
Kulturba et al. [36] performed the DES synthesis using glycerol or ethylene glycol as hydrogen bond donor and 
citric acid as hydrogen bond acceptor in the molar ratio of 4:1, respectively. In this case, 9.36 mg of anthocyanin 
recovery from Hibiscus sabdariffa was achieved in 180 s and 90 °C when using DES from ethylene glycol in relation 
to only 5.44 mg of anthocyanin total founded to DES from glycerol. This could be attributed to the lower viscosity 
of ethylene glycol in comparison to glycerol, which probably allowed for better sample diffusion. In this context, 
more investigations are need to found better conditions to use DES from glycerol to extraction processes 
in microwave, because it is a solution eco-friendlier. 
Another great applicability of glycerol was recently related to lignin fractionation. Usually, many solvents have 
been used to fractionate lignin such as ethyl ether, methanol, methane chloride, dichloromethane, n-butyl 
alcohol and other. However, the extraction process with several organic solvents is costly and harmful to the 
environment, despite being efficient. Glycerol was used in lignin fractionation by Liu et al. [37]. In the first step, 
corn straw was treated by steam explosion, and the residue went through a process of enzymatic hydrolysis. The 
enzymatic hydrolysis residue (EHR) was exposed to the alkaline extraction, followed by separation of soluble 
(EHL) and insoluble parts. After this, 20.00 g glycerol-ethanol solution (3:1, w/w) was added to 1.00 g de EHL, 
magnetic stirrer at ambient temperature until dissolution, centrifuged to move the insoluble lignin and obtained 
the sequential fractions. In this work was possible recovered lignin with different molecular weight and while 
decrease in its heterogeneity. The authors carried out the extraction of lignin as showed. Moreover, the mixture 
of 3:1 glycerol:ethanol (v v-1) was recycled and reused, but the color of these compounds changed during the 
process due to contaminants from the extraction. 
Although the literature points out that glycerol can be used in the presence of acids and bases, the presence 
of three hydroxyls in its structure (Fig. 1) may be important reactivity points, in addition to their coordinating 
properties, which can disable organometallic compounds limiting its application as inert substance [25,38]. 
Therefore, several modifications of glycerol have been studied in order to increase the applicability, as shown 
in the following section. 
 
Modification of Glycerol 
Glycerol applications in other areas include its use as a wetting agent, because its high viscosity gives greater 
consistency to the products and it is rapid heat transfer medium, also; it can be lubricant as it remains fluid 
at temperatures above 17.8 °C and is relatively resistant to oxidation. However, its properties may also restrict 
its application, since this triol is highly viscous at room temperature and has low solubility in hydrophobic 
compounds and gases. On the other hand, microwaves or ultrasound may be employed in an attempt to mitigate 
these issues, because in relation to conventional heating (heating plates, blankets) the use of microwaves 
enables higher heating rates and greater energy absorption by reactants or solvents, which results in improved 
mass transfer in the system. Thus, when using heating sources like microwaves, no temperature gradients 
or localized overheating occur and, therefore, there are advantages in the chemical modification of compounds, 
for example in the glycerol functionalization [23,39–41]. 
The chemical modification of glycerol aiming its absorption by the industry has been increasing and this 
compound is denominated a key raw material of many industrial chemical processes. Therefore, as can be seen 
in the Fig. 4, glycerol can provide a wide range of products, which are resulting of dehydration, oxidation, 
esterification, acetylation and etherification reactions [17,23,25,42,43]. 
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Fig. 4. Glycerol modification routes to obtain various products. Source: Authors, adapted from [17] and [44]. 

 
As aforementioned, glycerol can be transformed into many molecules due to the possibility of functionalization 
in its three hydroxyls, which are important reactivity points. Among such processes, the transformation 
of glycerol into ethers is being studied by some authors [17,18,42,45–51]. 
Glycerol ethers have applications as fuel additives, pharmaceutical intermediates, agrochemicals, solvents and 
nonionic surfactants. Among these molecules, glyceryl monoethers obtained using C4-C12 aliphatic chain 
alcohols have been investigated as they can be used as alternatives for petroleum-derived surfactants, 
as antiseptic and antimicrobial agents, as precursors for polymers and as green solvents. In the case of their 
interesting features for application, the use of glycerol ethers as a solvent in chemical reactions have attracted 
great interest currently [26,52–54]. 
The glycerol alkyl ethers can be naturally occurring with an alkyl or alkenyl chain linked by an ether bound to the 
glycerol at the C1 position and the remaining two hydroxyls can be free or acetylated. The compounds most 
known of this class are bathylic, chimylic and selaquilic alcohol, which are found in lipid membranes of marine 
animals (e.g. whales, starfish, squids and corals). These molecules receive several nomenclatures, such as glycerol 
ethers, lipid ethers, alkoxyglycerols, among others. They also can have substituents in only one hydroxyl position 
(monoalkyl ether of glycerol - MAEG), two (DAEG) or in all of their hydroxyls (TAEG) [44,55–57]. 
The etherification of glycerol to produce its alkyl derivative ethers can be performed via Williamson synthesis 
in a basic medium, via telomerization with butadiene derivatives, via reduction of compounds, in addition 
to condensation in an acid medium [53]. When dealing with routes that have a more environmentally friendly 
appeal, one of the most acceptable is acid condensation because it can use glycerol directly. In another way, 
other routes could reach a best yield in lower reaction time with higher selectivity, while using toxic and 
dangerous reactants, for instance in the case of the epichlorohydrin route [58], making it difficult to characterize 
them as green solvents. 
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Some authors have studied the synthesis of glycerol ethers through condensation for several purposes and 
achieved different selectivities in glycerol mono-, di- and triether by using homogeneous or heterogeneous phase 
catalysts, as well as the most varied sizes of hydrocarbon chains of alcohols or alkenes for the glycerol 
functionalization [17,44,55,59,60]. In addition, the alkyl chains of the compounds used in the etherification can 
be differentiated into linear or branched, long or short, which modifies the characteristics of the resulting ethers 
that became difficult to predict all the properties of these substances as a solvent, given the infinite possibilities 
of groups that can be used for the synthesis of the glycerol alkyl ethers. Table 1 shows some studies involving 
the synthesis of glycerol ethers that have been published.  
Among the methods of glycerol alkyl ethers synthesis, the Williamson’s route, the reaction with alkenes or the 
dehydration of alcohols are some frequently used. However, from the green chemistry point of view, 
a conventional synthesis (via Williamson ethers synthesis) of alkyl glycerol ethers is disliked for generating waste 
and employing toxic reagents. In this way, despite of the need to improve some issues, the condensation 
between different alcohols (that can be obtained from renewable sources) could be a better route to produce 
these compounds. Indeed, glycerol properties can result in low conversions due to its high viscosity and 
hydrophilicity, or the reproducibility of the conversions are not appropriate when using very hydrophobic organic 
compounds. In addition, other problems hinder the synthesis of EAG by condensation, such as the low selectivity 
towards the product of interest, due to the very similar reactivity of glycerol’s three hydroxyls, affording the 
formation of mono, di and triethers mixtures in different proportions. 
Glycerol alkyl-ethers are stable in the presence of water and chemically more inert than other glycerol-derived 
solvents, what make them attractive in the green chemistry concept. So, from the choice of oxygen-linked 
groups, characteristics with high boiling point, low flash point and volatility can be properties of this solvent. On 
the other hand, although they have a lower boiling point, for example, greater polarity can be observed in some 
glycerol alkyl ethers, such as 2,3-trimethoxypropane, 1,3-dimethoxy-2-propanol and 2,3-dimethoxypropan -1-ol, 
being able to replace polar solvents as dimethoxyethane in reactions [53,58,61,62]. Also, in the case of tunable 
properties, when trifluoroethanol is used as reactant in the synthesis of ethers, the obtained solvent 1,3-bis 
(2,2,2-trifluoroethoxy) propan-2-ol can present similar properties to some ionic liquids [63]. 
The toxicological issues of the glycerol alkyl ethers were evaluated by some studies and, in many cases, 
the toxicity of these compounds was almost negligible. However, by increasing the size of the hydrophobic part 
and the number of substituents on the compound, an increase in its toxicity can be observed by some biomodels, 
such as Dapnhia magna, Aliivibrio fischeri, Chlamydomonas reinhardtii and Danio rerio [12,53]. Therefore, several 
questions must be taken into account for the synthesis of glycerol alkyl ethers in order to obtain a green solvent 
and their properties deserve more attention as well as the study of the application of them in reaction medium. 



Acta Innovations  2020  no. 35: 29-56  36 

 

 

https://doi.org/10.32933/ActaInnovations.35.3  ISSN 2300-5599   2020 RIC Pro-Akademia – CC BY 

 

Table 1. Overview of glycerol ethers synthesis via condensation with an alcohol different from glycerol. Source: Authors. 
 

Alcohol Reference Catalysts and reactants Highlights 

Benzyl [64] 
A-35, Z-Hβ, K-10 montmorillonite, 

niobic acid and PTSA 
MAEG was the main product of the reactions carried out with Hβ (58%) and A-35 (38%). On the other hand, 
K-10 and PTSA were selective for dibenzyl ethers.  

Benzyl [47] Sulphated zirconia catalysts 
The conversion of benzyl alcohol increased with the reaction temperature and its selectivity decreased with 
higher MR. Conversions of 80% (30% MAEG, 25% DAEG and 20% TAEG) were achieved with 25 g kg-1 of 
catalyst, 6 h, 1:1 MR. 

Butanol [62] A-15 
Membranes for water removal made it possible to convert 85.1% of glycerol to 82.7% of alkyl ethers of 
glycerol. The conditions were 160° C, 6 h, 4: 1 MR of butanol: glycerol and 10% A-15. 

Butanol [52] 
Hybrid composites from Aquivion-

silica 
The Aquivion-silica composite exhibited a high catalytic activity (91% n-butanol conversion) producing 45% 
MAEG and 6% dibutyl ether. 

Dodecanol [65]  
A-70, CTAB, A-31, A-15, triphyl, 

hydrobromic, pyrenesulfonic 
acid, PTSA and 1-bromodecane 

Addition of 10 mol% of 1-bromododecane in the reaction medium led to the production of 60% of 
monododecyl-glycerol ethers. The presence of CTAB was necessary to ensure better contact between the 
phases. 

Dodecanol [46] 
Copolymers of PSt/PSSA 

(polystyrene/styrene sulfonic 
acid) and graphite hybrid silica 

The heterogeneous phase acid catalysts showed yields of 70% in dodecyl ethers, with MAEG obtaining 16% 
using MR conditions of 1:4 dodecanol: glycerol, 10% catalyst, 150 °C and 24 h of reaction under vacuum. 

Dodecanol [26] 
DBSA, DMSO, sulfolane and 1,4-

dioxane solvents 
The use of DBSA resulted in the formation of 25% of MAEG in the conditions of 3 h of reaction, 20 mol% of 
catalyst, 160 °C in a water removal system. 

Ethanol [48] A-15 
The optimized conditions that produced 56% of MAEG were: 238 °C, MR of ethanol: glycerol 16:1 and 0.61 
g of catalyst. The temperature, pressure and the amount of catalyst had a statistically significant effect on 
the MAEG response. 
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Alcohol Reference Catalysts and reactants Highlights 

Ethanol [49] 
K-10 montmorillonite, H-ZSM-5, 

Hβ and A-15 
Greater conversion (96%) and selectivity (80%) to MAEG were obtained at 180 °C, 3: 1 ethanol: glycerol MR 
in 4 h with the A-15 acid resin as a catalyst. 

Octanol [66] 
USY-550, USY-550-L, USY-650, 

USY-650-L-2, Hβ e HZSM-5 

Hydrophobic zeolites were active in the etherification of glycols and alcohols. The conversion of glycols was 
closely related to the hydrophobicity index of the material and the structure of the zeolite was crucial for 
the reaction. 

t-butanol [51] A-15, A-35, Hβ, Modernite and HY 
The Hβ zeolite provided glycerol conversions of approximately 90% for all conditions studied. In the milder 
reaction conditions of 4 h, 90 °C and 7.6% Hβ, it was possible to convert 96.7% of glycerol with a high 
selectivity of 81.8% of MAEG. 

t-butanol [67] 
A-15, A-35, A-36, A-39, A-31, A-

119, HY e Hβ 

The most active catalysts in the reaction were A-15 and Hβ. The maximum conversion of glycerol obtained 
was 96%, at 90° C, MR t-butanol: glycerol of 4: 1 and 3 h of reaction. Hβ was the most active catalyst in the 
reaction, because it produced up to 45% of ethers in 6 h, while Amberlyst led to the formation of only 25% 
of ethers under the same conditions. 

A: Amberlyst, AEG: alkyl ethers of glycerol, CTAB: Cetyl trimethylammonium bromide, DAEG: dialkyl ether of glycerol, DBSA: Dodecylbenzenesulfonic acid, DMSO: Dimethylsulfoxide, Hβ: Zeolite of 

H-Beta type, HY: Zeolite of H-Y type, MAEG: monoalkyl ether of glycerol, MR: Molar ratio, PTSA: p-toluenossulfonic acid, TAEG: trialkyl ether of glycerol. 
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Levulinic acid 
Levulinic acid (LA) (Fig. 5), also known as 4-oxopentanoic acid or as 3-acetylpropionic acid is a γ-keto acid and 
non-volatile that has a boiling point of 245 °C. This acid presents great solubility in water as well as in polar 
solvents, such as diethyl ether and ethanol. The presence of a keto group in its structure make the LA has higher 
dissociation constants than a common saturated acid, with a pKa of 4.59 (in water at 25 °C). Furthermore, the 
two functional groups of this compound, carbonyl and carboxyl, afford to it a large variety of application 
in synthesis, as a consequence, LA together with glycerol were considered by the US Department of Energy’s one 
of the “Top 12” most important bio-based chemicals in the world [68–71]. For instance, LA has potential to be 
used in the synthesis of several products that nowadays is provided mostly by the petrochemical industry, such 
as succinic acid, resins, polymers, herbicides, pharmaceuticals, flavoring agents, plasticizers, antifreeze agents, 
biofuels/oxygenated fuel additives and solvents [72]. 
 

 
Fig. 5. Chemical structure of levulinic acid. Source: Authors. 

 
Currently, the widely known methods of LA production involve the complex conversion of maleic anhydride, the 
hydrolysis of furfuryl alcohol or the oxidation of ketones with ozone. However, these processes are based on 
petrochemical and expensive starting feedstocks, which results in the relatively high market price of LA (~US$10 
kg-1). In addition, large amounts of side products and residues are produced in these vias. An alternative to reduce 
the cost of LA production is the conversion of sugars from biomass through acid-catalyzed dehydration and 
hydrolysis (Fig. 6)[73,74]. 
 

 
Fig. 6. Conversion of cellulose and hemicellulose into levulinic acid. Source: Authors, adapted from [4,75,76]. 

 
During the conversion of biomass, in acid medium, the hexose sugars are converted in LA and formic acid (FA), 
therefore, the maximum theoretical yield possible of LA is 64.5 wt. %. In spite of that, the FA can be used in the 
production of formaldehyde, rubber, plasticizers, pharmaceuticals and textiles or it can be hydrogen source for 
other reactions, which is important to the valorization of the whole biomass processing [73,77]. Other factor that 
affects the LA yield is the instability under acid conditions of the intermediate formed in the biomass conversion, 
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 5-hydroxymethylfurfural (HMF), which can be transformed in other compounds, such as 2,5-
furandicarbaldehyde and 2,5-furandicarboxylic acid (FDCA). Also, several reports found side reactions harming 
the obtaining of LA that led to the formation of black insoluble-materials, called humins. Therefore, the reaction 
conditions should be optimized in order to increase LA yields [73,74].  
A useful tool to improve LA yield and selectivity is the use of solvents in the reaction medium during the 
conversion of the sugars. The ideal solvent to the reaction mixture would be water, however, side reactions are 
favored in this medium, such as polymerization and humins formation. Thus, commonly high boiling point 
solvents are employed, for example, DMSO, N,N-dimethylformide (DMF) and sulfolane. These compounds can 
reduce side reactions, but in contrast, they add to the process energy costs for their separation from the products 
and to overcome this issue, the reuse of the solvent should be performed [78,79]. For instance, Wang et al. 
[79]reported the use of sulfolane:water mixture as solvent in the conversion of cellulose into LA and recycled 
three time the organic solvent. In this study, the mass ratio used was of 9:1 (sulfolane:water) and it was achieved 
72.5% of LA yield LA (in relation to the total cellulose), even after three solvent recycles. Although the production 
cost could be reduced, sulfolane is a toxic non-renewable solvent that should be avoided in environmentally 
friendly processes. 
The use of greener solvents was investigated by other authors, such as Han et al. [80] that converted cellulose 
into LA using a solvent derived from biomass, γ-valerolactone (GVL), and the best result obtained was 35.6% 
of LA yield, at 185 °C in 120 min of reaction by using a lignin-based catalyst. The efficiency of the reaction was 
related to the ability of GVL to enhance the adsorption of cellulose in the solid catalyst, so the interaction of the 
substrate with acid sites was more effective. In contrast, at the end of the reaction it was found several by-
products such as FA, glucose, furfural and fructose, which indicates that the catalyst promoted the isomerization 
of glucose into fructose and the selectivity to LA decreases.  
Other biomass-derived solvent that was already employed to the conversion of glucose into LA is 2-
methyltetrahydrofuran (2-MTHF). Jiang et al. [78] investigated the transformation of glucose into LA in water/2-
MTHF biphasic solvent system under microwave heating. The selectivity of LA achieved was of 88% with 100% 
glucose conversion, at 200 ºC by 60 min (pH = 1) using FeCl3 as catalyst. The conversion of Poplar WT 717 
in the same conditions gave 53% of LA (based on glucose content in biomass). Despite the less LA production 
in the biomass conversion, it was demonstrated that 2-MTHF avoided side reaction of C5 and C6 sugar to humins 
and increases the yields of HMF and LA in relation to the use of water only. On the other hand, 2-MTHF was 
decomposed into (Z)-3-penten-1-ol and 1,4-pentanediol due to acid and high temperatures, wherefore 
the solvent could not be reused in order to decrease the process costs. By contrast, ionic liquids (ILs), in spite 
of being expensive, can be more stable at the reaction conditions, so the literature have reported their recycling 
in some cases of the synthesis of LA [81,82].  
In the work of Kumar et al. [83], LA selectivity of 56% was attained through glucose conversion, that involved the 
use of the 1-(4-sulfonic acid)butyl-3-methylimidazolium chloride ionic liquid (IL) (IL-SO3H) and NiSO4 as catalyst. 
Besides that, the process cost was diminished, since the IL was recycled three times remaining the LA yields. 
In another study [82], higher LA selectivity (66%) was achieved from the reaction of cellulose using the IL 
[C3SO3Hmim][HSO4] under microwave heating. The selectivity was even improved to 86% by the reduction of the 
mass proportion of 0.55:1:6 to 0.02:1:6 (cellulose: IL: H2O) and the IL was reused for five cycles by its recovery 
using methylisobutylketone (MIBK). Surprisingly, the authors found an increase of LA yield from 58% (first cycle) 
to 66% (fifth cycle), which was attributed to the residual oligomers of cellulose dissolved in the IL. Therefore, the 
spread of this system to use of lignocellulosic biomass feedstock would be hampered, whereas the high affinity 
of it toward ILs would make the economical reuse of IL unfeasible as well as the contamination of the products 
with ILs of unknown toxicity [81]. 
The disadvantages aforementioned related to the high costs of LA production through different methods could 
be minimized by the direct use of lignocellulosic biomass, which also contributes to the sustainability of the 
process by the use of renewable materials [81,84]. For instance, the hydrolysis of cellulosic food waste under 
microwave irradiation was studied by Chen et al. [84], whom achieved 17% of LA yield in only 5 min of reaction 
in a medium containing water and Amberlyst-36. When DMSO was added to the system, 40% of LA yield was 
obtained. The authors attributed the efficiency of the reaction to the high content of amorphous cellulose 
in the raw material and its solubility in DMSO, which affords good interaction between the substrate and the 
catalyst. The major disadvantage of this system was the coverage of the solid catalyst with the humins formed 
in the medium that hindered the improvement of LA yields. Moreover, the results attained cannot be 
reproducible, since the material used is variable due to be an urban waste. Therefore, the use of other biomass 
sources that could consist by less amorphous cellulose could give lesser LA yields due to biomass recalcitrance 
[81,85].  
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In the study of Kumar et al. [85], it was used rice straw as substrate, which is an agriculture residue of known 
high recalcitrant nature. The approach used to convert the lignocellulosic material into LA was a co-solvent 
system consisting by dichloromethane (DCM) and HCl that allowed the continuous extraction of furans from 
reaction medium and made it possible the achievement of 15% of LA yield (57% of theoretical yield), at 180 °C 
and 3 h. Contrasting the idea of using a residue (rice straw) to avoid environmental issues, the authors applied 
DCM and HCl, which are hazardous and require recovery and treatment, making the greenness of the overall 
process dubious. In addition, energy saving was not performed since a high temperature was used. The high 
temperature (180 °C) was crucial to the LA accumulation, but it reduced the partition coefficient of the products, 
thus, the conversion of LA required large amounts of solvent, in the volume ratio of 5:1 (DCM:Water). However, 
fortunately, the system allowed the recovery of 90% of the solvent and its recycling in 5 runs, maintaining the LA 
yield.  
Other authors have reported the LA obtaining by the conversion of acid-pretreated eucalyptus wood. The 
pretreated material was composed by approximately 63.8% of glucans and 34.6% of lignin. After this stage, LA 
was obtained by the reaction of the substrate with H2SO4 0.2 mol L-1 in repeated batch reactions, at 170 °C by 5 
h. The study showed that, for the pretreated material, there was need 3 reaction cycles to achieve about 70% 
of LA yield and for the untreated material the same yield was obtained with 6 batches of reaction [86]. In both 
investigations [85,86], the issue related to LA recovery was related to the temperature used that led to the 
formation of humins, which have affinity to water and dragged LA to the aqueous phase. Also, the residual solids 
(humins and lignin) hindered LA synthesis, not only by physical interaction with it, but also, by reactions between 
those compounds that were not very well elucidated. Therefore, the production of humins should be avoided 
to facilitate the LA processing. 
When using biomass as substrate for LA synthesis, the pentoses present in the material are easily transformed 
in humins under the conventional harsh reaction conditions. Although, the reaction conditions used to convert 
hexoses into LA can transform pentoses into the furfural, which can result in LA too and this procedure involves 
more reaction steps. To overcome these questions, an alternative could be the pentose extraction prior to the 
LA production [74]. 
Runge and Zhang [74] performed a two-stage synthesis of LA from hybrid poplar, which is a material with 14-
18% of pentosans. The first step of the process consisted of an acid extraction (1% H2SO4), under 160 °C, 60 min, 
and a 6:1 liquor to wood mass ratio, which removed 85% of pentosans and kept a solid with 92% of hexosans. 
The second step was the LA production by using the solid material concentrated in hexosans in harsh conditions 
(190 °C, 5% H2SO4, liquor to wood ratio 10:1 and 50 min), which provided 66% of LA yield in a 2L reactor. When 
using the material non-extracted, under same conditions, the LA yield produced was about 50%. In addition, the 
furfural obtained from the non-extracted material was very low (<0.1% of theoretical), which confirms that 
optimal conditions to LA production are too harsh to produce furfural that is further transformed into LA. 
In short, the process described is quite interesting, however, it aggregates one more stage on biomass conversion 
that requires time and energy. Additionally, the use of H2SO4, a non-recyclable catalyst, results in costs of waste 
treatment. Therefore, although the common method of LA production by homogeneous acid catalysis usually 
affords yields up to 70% (in harsh conditions), there are unfeasible steps of separation and treatment of the 
liquid catalyst, since its distillation is expensive and promotes reactor corrosion. Besides that, side reactions 
involving humins formation could be also due to the non-selective nature of the homogeneous catalysts [87]. 
Based on that, it is proposed over the literature the use of heterogeneous catalysts that can be more selective, 
since there are of possibility of tune its properties, like acidity, porosity and specific area, and they are easily 
recovered and potentially reused [88–90]. 
Together with the advantages already mentioned, heterogeneous catalysts reduce the problem of reactor 
corrosion. However, the use of this type of catalysts, that are generally solids, implies in limited mass transfer, 
which is worsen depending on the substrate used to LA production. In this context, the conversion of the liquid 
hydrolysate from Quercus mongólica treated with H2SO4 towards LA synthesis was investigated by Jeong et al. 
[88], whom showed the efficient use of the commercial solid zeolite Y modified with NaOH as catalyst. The LA 
production was assigned to the mesopores and strong Lewis acid sites of modified-zeolite. There was 
demonstrated that the catalyst preferable converts C5 than C6 sugars and it would be suitable for a biorefinery 
concept, which consists of a multi-step treatment of biomass and uses separated glucose and xylose. However, 
the maximum LA yield could not be increased, since temperatures higher than 190 °C afforded humin production. 
Also, a large portion of the C5 sugar remained as furfural and was not transformed in furfuryl alcohol and, then, 
LA. That was attributed to the insufficient number of strong acid sites in the catalyst and to the glucose or xylose 
molecules hindering the access of reactant to the active sites. Moreover, no catalyst reuse was investigated,  
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which do not justify the use of a commercial catalyst in the process. Another example of the use of liquid sugar 
source and a solid catalyst to the production of LA was reported by Kang and Yu [89], whom used sugar beet 
molasses as substrate and acidic cation exchange resin (Amberlyst-36) as catalyst. The yield of LA achieved was 
of 53.2% and it was improved to 78% with the removal of non-sugar components from the molasses. In despite 
of the catalyst be active in a complex substrate (not only composed by C5 or C6 sugars), its reuse was not 
efficient, since the regeneration required harsh conditions of sulfonation, which resulted in a gradual activity 
loss.  
Solid catalysts have been successful active in transformation of liquid sugar sources, however, many of the 
challenges associated with them are related to hydrolysis of solid feedstocks, such as biomass and long-chain 
cellulose. Most of the studies that reports the use solid biomass conversion have showed yields ranging from 30-
60%mol of LA in detriment of the use of organic solvents. Furthermore, generally the catalysts used are 
commercial or of expensive method of production, such as zeolites, ionic exchange resins, zirconium dioxide and 
Gallium salt of molybdophosphoric acid [83,90,91]. Indeed, it is increasing the development of solid catalysts 
based on renewable sources for the greener obtaining of LA.  
Li et al. [92] produced magnetic ferric oxide/SO4

2- biomass-based solid acid from corn straw carbonized and 
sulfonate (MIO/SO4

2−B-BSACs). Such catalyst was used in the pyrolysis of corn straw and at optimized conditions 
(250 °C, 70 min) the yield of LA was 23%. The conversion was attributed to the similar structures of corn straw 
substrate and that of the catalyst that afforded good interaction between them. Meanwhile, the authors did not 
mention the catalyst lixiviation that could happen, and then the LA yield could be not only from substrate but 
also from MIO/SO4

2−B-BSACs structure. The magnetic particles of the catalyst enable its separation from reaction 
medium, which avoids issues related to outgoing in product purification and residues treatment, but still, the use 
of 250 °C as reaction temperature is an expensive energy input. In lower temperature (185 °C) Han et al. [80] 
attained higher yield of LA (36%) by using a solid catalyst base on alkaline lignin carbonized and treated with 
a ferrous sulfide solution. The catalyst was used in the synthesis of LA from microcrystalline cellulose in a system 
of GVL:water as solvent. Those green solvents were used, but the authors did not study the possible recovery 
and recycling of them, which are expense and environmental effects must be taken into account. 
In 2011, Lomba and co-workers studied several thermophysical properties of five compounds classified as green 
solvents derived from biomass (furfural, furfuryl alcohol, levulinic acid, ethyl levulinate and butyl levulinate). 
Remarkably, levulinic acid showed low vapor pressure, so it can be considered a suitable candidate for 
substitution of solvents that are volatile organic compounds (VOCs) and interesting for industrial applications, 
since its recovery could be facilitated [93]. 
In relation to the use of LA as solvent, there are reports of it in mixtures to solubilize diesel and in the composition 
of some degreasing agents. Also, LA and its esters are solvents in polymers, textiles and coatings [93]. Indeed, 
given LA reactivity, its use to produce other molecules that are widely used as solvents have increasing over the 
years. Well-known examples of levulinic acid derivative that can be used as solvent are the alkyl levulinates, 
which will be better explored in the next section of this article.  
 
Alkyl levulinates 
Alkyl levulinates (AL) (Fig. 7), particularly those with hydrocarbon chain ranging from C1 to C6, are biomass-
derivatives that have valuable properties, such as consistent permittivity, high lubricity, high boiling point, 
suitable flash point and low vapor pressure. These compounds can be used as building blocks in organic synthesis, 
as fragrance, as flavoring agents, as well as fuel additives and solvents. Along the properties mentioned, some 
features make AL more interesting to the use as green solvents, such as adequate cytotoxicity and mutagenicity. 
Besides that, the possibility of varying the alkyl chain can afford properties tuning to specific solvency 
requirement [94–96]. 
 

 
Fig. 7. Chemical structure of alkyl levulinate. Source: Authors. 

 
The common routes used to the AL obtaining are direct alcoholysis of carbohydrate biomass (Fig. 8) or conversion 
of biomass-derived chemical, such as LA, furfuryl alcohol, HMF or furfural. The first report of AL synthesis is over 
150 years old, when the authors used LA for the synthesis of methyl and propyl esters, using HCl as catalyst. Ever 
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since, the direct esterification of levulinic acid over acidic catalysts or enzymes (lipases) is widely studied and 
high selectivity values can be attained (up to 99%) [94,95].  
 

 

 
Fig. 8. Proposed reaction pathway for the acid-catalyzed conversion of glucose to methyl levulinate in methanol. Source: 

Authors, adapted from [72]. 

 
A great number of studies have reported the production of AL using homogeneous acid catalysts, though some 
drawbacks, mainly with the rise of the concerns related to environmental issues, have encouraged the use 
of greener catalyst [69]. For instance, Di et al. [97] showed the use of a biocatalyst (lipase), which is used at mild 
reaction conditions, it is non-toxic, non-corrosive and, in this case, the use of the immobilized enzyme (Novozym 
435) gives the advantages of its recovery and reuse. Then, the authors carried out the reaction between LA and 
methanol in the presence of some solvents, including the 1-butyl-3-methylimidazolium hexafluorophosphate 
([bmim][PF6]) IL and the biomass-derived 2-MeTHF, which afforded the yields of 93% and 91%, respectively. The 
drawback of using 2-MeTHF was the lipase deactivation under sequential uses, since in 5 cycles the LA yield 
decreased to only 19.1%, while in [bmim][PF6] it reached to 43.2%, which limits the dilution of the high cost 
of enzymatic process. Additionally, the process lasted 24 h, being too long in relation to the conventional 
homogeneously catalyzed (up to 6 h). 
The alternative use of chemical heterogeneous catalysts was reported, such as the commercial heteropolyacids, 
sulfated metal oxides, zeolite molecular sieves and hydrotalcite-like compounds [69], whose also present the 
disadvantage of high cost. Recently, Bosilj et al. [98] reported the use of a cheaper biomass-derived catalyst 
in the conversion of glucose into ethyl levulinate (EL). In this study, an acid-functionalized hydrothermal catalyst 
derived from glucose was produced by hydrothermal carbonization of glucose that was first treated with sodium 
borate (borax) to generate carbon nanoparticle size and, then, it was sulfonated with H2SO4. By using this 
material and ecofriendly solvents (ethanol, glycerol and GVL), the EL yields attained were as high as 25-37 mol%, 
depending on the solvent system used. In 6 h of reaction at 200 °C, the yields achieved were of 37, 35 and 25 
mol% of EL, when using ethanol:glycerol, etanol:GVL and etanol by itself as a solvent, respectively. One 
inconvenience of using GVL is its probable dehydration to α-angelica lactone and hydration to levulinic acid, 
which could further form EL with ethanol, giving an EL yield that account not only to the original substrate used 
(glucose). On the other hand, the use of glycerol was advantageous, since it promoted rapidly conversion 
of glucose into 5-HMF and reduced humin deposition on the reactor wall.  
Yang et al. [99] prepared a magnetic carbonaceous solid acid (SMWP) catalyst from waste paper scraps via Fe-
impregnation, carbonization and sulfonation process, which could easily be recovered from reaction medium 
with external magnetic fields. The SMWP catalyzed the alcoholysis of furfuryl alcohol with n-butanol, reaching 
to 90.6% yield of n-butyllevulinate in 5 h at 120 °C, such catalytic activity was assigned to a strong acidity and the 
affinity towards furfuryl alcohol, due to the presence of the SO3H, COOH and phenolic OH groups on the catalyst 
surface. Moreover, the catalyst was reused for 7 times with a slightly loss of activity that was attributed to the 
adsorption of some oligomeric by-products on the surface of SMWP.  
The results aforementioned are quite interesting from the synthetic point of view, however, it was reported the 
use of pure substrates (furfuryl alcohol and glucose) that are costly products. Therefore, the investigation of the 
direct synthesis of alkyl levulinates from lignocellulosic materials have increased, since the reaction can be 
performed in a one-step way, which reduces stages of products purification and the amounts of wastewater, 
besides that, this method could save time and be cost effective [69,94,95]. On the other hand, recalcitrance and 
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insolubility of the raw biomass require drastic reaction conditions for the alcoholysis/hydrolysis of the structural 
carbohydrates, which hinders the obtaining of alkyl levulinates selectively with the yields obtained about 10–
30% [100]. Therefore, some authors described the fractionation of the lignocellulosic material prior to its 
conversion into AL. For instance, Liang et al. [101] carried out the preparation of bifunctional solid-acid catalyst 
from the hydrothermal hydrolysate of dewaxed wood powder of eucalyptus globulus residue that was sulfonated 
and impregnated with Zr4+. The other portion of the biomass hydrolyzed had the lignin removed with DES and, 
then, it was used as substrate to the production of methyl levulinate (ML) and the highest yield reached was 
38.7%. This study showed the improvement of the ML yields by using a pretreated lignocellulosic material. 
Nevertheless, the proposal is a multistage process, which can result in exceeding steps of recovery and residues 
treatment. 
The one-pot synthesis of methyl levulinates was carried out by Feng et al. [100] by using bamboo as carbohydrate 
source, the ML yields achieved were up to 48.7%, in a solvent system of dimethoxymethane/methanol, at 200 
°C for 150 min. The authors attributed the result to the ability of dimethoxymethane to act as an electrophile 
that promoted the transformation of furfural to 5-hydroxymethylfurfural and rapidly conversion to ML and to 
the methanol act as solvent/reactant that dissolved the reaction intermediate, avoiding furans polymerization 
and promoting continuous liquefaction of the material and releasing of ML. In another study, Guan et al. [102] 
used IL as catalyst to produce ethyl levulinate from wheat straw in a one-pot reaction in ethanol. In this case, IL 
and ethanol also played the role of solvent and the highest biomass conversion, 85.5%, was obtained in 1 h at 
200 °C by using the IL [HSO3-BMIM][HSO4]. The overall EL yield attained was 16.2% and it was the main 
component in the liquid products, since its content was 28.1%. 
The use of solid catalyst is very limited in the processes of direct biomass conversion, thus, ILs seems to be a 
good option, since they can increase the dissolution of lignocellulosic materials and act as catalysts in the 
alcoholysis of the substrates. Therefore, the recovery and the reuse of ILs should be optimized to the reduction 
of processes costs. Also, one-pot reaction is advantageous in relation to biomass fractionation, because it 
reduces process steps. Some authors have highlighted that direct obtaining of alkyl levulinates instead of levulinic 
acid is advantageous, because the levulinate esters, mainly those of short chain (C1-C4), present lower viscosity, 
acidity and boiling point. Additionally, ALs are non-corrosive and more stable under reaction conditions, which 
requires lower energy consumption in the stage of their separation from the medium. One issue in the one-pot 
reaction may be the low selectivity achieved of AL, but, in comparison to dehydration/hydration reaction to 
obtain biomass derivatives and further convert them into AL, reactions of biomass performed directly in alcohols 
can protect highly reactive intermediates and prevent unwanted polymerization reactions, improving the yields 
of the required products [69,100,102]. 
About the potential use of AL as solvents, The group of Sah and that of Schuette published some physical and 
chemical properties of methyl to hexyl levulinates, whose had boiling point in the range of 190−270 °C, they were 
all soluble in classical solvents (e.g., alcohols, ethers and chloroform), but insoluble in water (except methyl 
levulinate) [103,104]. Lomba et al. [93] measured the vapor pressures of alkyl levulinates and the values obtained 
at 100 °C were 5.96, 4.69, and 1.56 kPa for methyl, ethyl and butyl levulinate, respectively. These results show 
their easily handle in relation to chlorinated solvents that present vapor pressures more than 400 kPa at the 
same temperature. Other property evaluated was the partition coefficient in octanol:water (Log P) that showed 
the highest solubility in water of ML among the esters, whose water solubility decreased as the alkyl chain 
increased. It is important, because the solubility in water affects the potential for biodegradation of the 
compounds. In addition, Ferrer et al [105] presented in their patent of the use of alkyl levulinates for metallic 
surface degreasing some data showing that butyl, iso-butyl and pentyl levulinates present excellent environment, 
health and safety properties, such as not being cytotoxic neither mutagenic. 
Marcel et al. [96] performed the use of alkyl levulinates (methyl, ethyl and n-butyl) as solvents for the 
heterogeneously Pd-catalyzed Heck coupling, as far as it is known, for the first time. The reaction of Heck coupling 
between 2-iodoanisole and n-butylacrylate giving 2-methoxycinnamic acid butyl ester using alkyl levulinates as 
solvents showed yields ranging from 88 to 98%. The efficiency of the process was attributed to the catalysis 
occurring through the soluble Pd species, since, those species leach from the support and form complexes with 
reactants/solvents in solution and, after, Pd is redeposited on the support. Methyl and ethyl levulinates afforded 
96% and 98% of product yields, while in n-butyl levulinate the yield was 88%, however, the non-solubility in water 
of n-butyl levulinate is an advantage for its recovery and treatment before environmental disposure. This solvent 
was then used in the reactions of other aryl halides, taking to conversions between 83 and 100%. These results 
were different from that usually observed for C-C couplings, when normally lower yields are attained for 
deactivated aryl halides, including iodides, which was attributed to a specific interaction between the solvent 
and the catalyst under the conditions, due to different degrees of reduction of Pd species. Additionally, n-butyl  
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levulinate was recovered by simple distillation and its integrity was asserted by NMR. Afterwards, n-butyl 
levulinate was reused in one run that presented the same result of the first. More studies are need to fully explain 
the reactivity improvement in AL. Besides that, these compounds revealed potential that should be explored in 
other reaction. With respect to the reliable of the use of alkyl levulinates as green solvents it also requires further 
investigation towards their toxicity. 
 
γ-Valerolactone (GVL) 
γ-Valerolactone (GVL) has attracted great attention in the last years especially due to its exceptional chemical 
and physical properties, such as low melting (-31 °C) and high boiling (207 °C) points, remarkably low vapor 
pressure even at higher temperatures (3.5 kPa at 80 °C), miscibility with water without azeotrope formation, no 
peroxides formation in the presence of air and high stability at neutral pH, making it a safe material for large-
scale use [1,106]. The chemical structure of GVL is shown in Fig. 9. 
 

 
Fig. 9. Chemical structure of γ-valerolactone (GVL). Source: Authors. 

 
Owing to the aforementioned properties, GVL is seen as a renewable solvent and as a potential biofuel additive. 
For instance, Strappaveccia et al. [107] identified GVL as a sustainable alternative to classic and toxic dipolar 
aprotic solvents, such as acetonitrile, dimethylformamide (DMF), or N,N-dimethylacetamide (DMA) in cross-
coupling reactions. The authors observed a successful clean use of GVL in palladium-catalyzed Heck reaction 
of several small molecules (iodobenzene with acrylic esters and iodobenzene with styrenes). Horvath et al. [106] 
carried out a comparative evaluation of GVL and ethanol as fuel additives by mixing 10% (v v-1) GVL or ethanol 
with 90% (v v-1) 95-octane gasoline. The results showed that most of the data for GVL are comparable with 
ethanol and its lower vapor pressure leads to improved combustion at similar octane numbers. Besides that, GVL 
can also be precursor to high-grade liquid alkene transportation fuels and fine chemicals, including 2-
methyltetrahydrofuran (2-MTHF), 1,4 pentanediol, alkyl pentenoates and α-methylene-γ-valerolactone, which 
may find application in the production of biobased polymers [106,108–113]. Nevertheless, the maximum 
economic and environmental benefits associated with utilization of GVL will only be achieved if a greener process 
is employed during its production [112]. 
The synthesis of GVL can follow two different pathways that entail in a sequence 
of dehydrogenation/hydrogenation of LA or vice versa (Fig. 10). The first pathway is a catalytic hydrogenation 
of LA to yield 4-hydroxypentanoic acid, followed by acid-catalyzed intramolecular esterification to form GVL. 
The second pathway is an endothermic acid-catalyzed dehydration of LA to angelica lactones and under H2 
atmospheres, the preferred lactone GVL is thermodynamically obtained. Depending on the reaction conditions 
such as solvent, metal catalyst and presence of residual acid-impurities, one pathway may be favored [114]. 
Abdelrahman et al. [108] observed that Ru-catalyzed LA hydrogenation in the aqueous phase at temperatures 
below 150 °C, it forms exclusively via intramolecular esterification of 4-hydroxypentanoic acid. It is also important 
to highlight that two hydrogen sources are possible, molecular hydrogen (H2) or catalytic transfer hydrogenation 
using alcohols or formic acid [77,115–117].  
 

 
Fig. 10. Synthesis of GVL from LA. Source: Authors, adapted from [4,108,114]. 
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Heterogeneous catalysis may provide an efficient methodology for LA conversion allowing high reaction rates 
and high selectivity of the target products. The ability of a range of precious metals to catalyze LA hydrogenation 
has already been extensively explored, with good GVL yields (in the range of 80 to 99%) obtained from 
ruthenium-supported catalysts [108,116,117]. For instance, Al-Shaal et al. [112] examined the ability of Ru/C 
to catalyze LA hydrogenation using 12 bar H2 in methanol, ethanol and 1-butanol at 130 °C for 160 min. Among 
the alcohols screened, methanol facilitated the highest GVL yield, 84.4%, while ethanol and 1-butanol resulted 
in yields of 61.1% and 39.7%, respectively. When mixtures comprised of water (10% v v-1) and a given alcohol 
(90% v v-1), were utilized as solvents, ethanol/water and 1-butanol/water systems resulted in a substantial 
increase in GVL yields. The result can be explained by the lower H2 solubility in less polar alcohols [118] and the 
high capacity of water to dissolve H2 [119]. In fact, the authors obtained 86.2% yield of GVL using only water as 
a reaction solvent in the LA hydrogenation. This is very important because the commercial LA production via 
hydrolysis of lignocellulosic biomass is generally performed in water-contained medium that results in LA product 
streams containing water [110], which facilitates closer process integration and increasing efficiency, 
by removing the costly need to separate water from LA feeds prior to hydrogenation. However, the presence 
of water in LA product streams could create additional challenges with regard to catalyst stability. When alcohols 
are employed as reaction solvents, both LA and GVL can undergo esterification. Thus, Al-Shaal et al. [112] also 
showed the hydrogenation of alkyl-levulinates (methyl-levulinate and butyl-levulinate) in methanol, using 
identical conditions to those employed for LA (12 bar H2, at 130 °C for 160 min). GVL yields were similar to those 
obtained from LA, establishing that esters of LA can be readily hydrogenated to GVL as well. The conversion 
of lignocellulosic biomass to levulinic esters instead of LA could enables higher yields and easier product 
separation [87], suggesting an alternative route to GVL synthesis. 
To achieve an economical and sustainable production of GVL, the development of noble metal-free 
heterogeneous catalysts is an important research target, as noble metal-based catalysts are costly. An effective 
non-noble-metal catalyst was studied by Shimizu et al. [120]. The hydrogenation of LA to GVL under solvent-free 
conditions in 8 bar H2 at 140 °C for 5 h in the presence of 1 mol% of Ni-MoOx/C catalyst resulted in 97% yield. 
However, the catalyst recyclability was lower, achieving only 50% yield of GLV after the first cycle. Yi et al. [121] 
carried out a comparative study using Ni and Ru catalyst, both supported on HZSM-5, at 220 °C for 10 h in 30 bar 
H2 and using 1,4-dioxane as solvent. The catalytic experimental results showed that Ni/HZSM-5 catalyst achieved 
93.1% yield of GVL, while Ru/HZSM-5 catalyst exhibited 85.7% yield of pentanoic esters (PE) and pentanoic acid 
(PA) under identical conditions (Fig. 11). Therefore, it was found that Ru/HZSM-5 increased the strong acidic sites 
and provided the ring opening of GVL, promoting the formation of PE and PA. In comparison, Ni/HZSM-5 catalyst 
was much more effective to produce GVL, once it showed relative lower acidic sites and negligible GVL ring-
opening ability.  
 

 
Fig. 11. Proposed reaction pathway during the hydrogenation of LA over Ni/HZSM-5 or Ru/HZSM-5 catalysts in 1,4-dioxane 

solvent. Source: Authors, adapted from [121]. 
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A greener process to convert LA to GVL was proposed by Liu et al. [122], which used a cobalt-based catalytic 
system in order to avoid the use of noble metal catalysts. The highly efficient catalytic system was composed 
of commercially available cobalt salt, Co(BF4)2·6H2O and a tetradentate phosphine ligand P(CH2CH2PPh2)3, 
affording 95% GVL yield at 100 °C and with atmospheric H2 pressure. Cobalt was also used as catalyst for GVL 
synthesis by Murugesan et al. [123], which applied LA for the preparation of cobalt-based nanocatalysts. These 
nanoparticles created reusable catalysts (up to 4 times) for the hydrogenation of LA, achieving 97% GVL yield 
in the following reaction conditions: 30 bar H2, 1,4-dioxane as solvent, 120 °C during 24 h. 
 
Another approach to produce GVL is using a one-step conversion of carbohydrates. Both Brønsted acid catalyst 
and hydrogenation catalyst are required for the conversion of carbohydrates into GVL in the one-step method 
[124,125]. The acidity of Brønsted acid catalysts is determined by its dissociation constant (pKa), but also 
dependent on the solvent. Particularly water-contained solvents that are common in the biomass conversion 
process, usually negatively affect the acidity of Brønsted acid catalysts [126]. Cui et al. [109] studied several 
carbohydrates conversion into GVL combining a strong Brønsted acid, H3PW12O40 and Ru/TiO2 catalysts. The one-
step conversion in a monophasic γ-butyrolactone/water (80/20, v v-1) solvent under a mild reaction condition 
(150 °C and 40 bar H2) resulted in GVL yields of 70.5 and 58.5 mol% from inulin and sucrose, respectively. As the 
most abundant biomass, cellulose is considered as an ideal resource to produce GVL. However, a direct 
conversion of cellulose into GVL is more challenging due its recalcitrance structure. The direct conversion 
of cellulose to GVL was investigated by the authors using the same conditions above and a yield of 40.5% of GVL 
was obtained. 
Most works concerning GVL production from carbohydrates involves the selective dehydration of carbohydrates 
to LA followed by hydrogenation of LA to give GVL by using an external H2 supply. A different route to convert 
carbohydrates into GVL without use of any external H2 supply was reported by Deng et al. [77]. The authors 
related a hydrogenation process using ruthenium-based catalytic systems accomplished only in the presence 
of the formic acid produced from the original acidic dehydration step of glucose. The route improved the atom 
economy of the process and avoided the energy-costly separation of LA from the mixture of LA and formic acid 
in aqueous solution. However, it is important to note that the proposed process presents some drawbacks, such 
as temperatures as high as 220 °C and reagents that are corrosive and toxic (hydrochloric acid and pyridine). 
Son et al. [117] synthesized GVL from one-pot dehydration/hydrogenation reaction of fructose in water solvent 
over supported metal catalysts. In this reaction, formic acid played two roles, an acid catalyst for dehydration 
of fructose to LA, and a hydrogen source for hydrogenation of the obtained LA. The Au/ZrO2 was the best catalyst 
showing an overall GVL yield of 48% and could be reused for several times, though it was partly deactivated. On 
the other hand, Fabos et al. [116] showed the hydrogenation of LA to produce GVL with a small excess of formic 
acid in the presence of the ruthenium Shvo catalysts. The reactions were performed at 100 °C in an open vessel 
with yields higher than 99% after 5 h. The only byproducts were water and carbon dioxide, which were easily 
eliminated, by distillation in the case of water and the carbon dioxide was bubble out of the solution.  
Although the transformation of LA to GVL can be achieved using heterogeneous catalysis, homogeneous catalytic 
systems that operate under milder reaction conditions give higher selectivities and can be recycled continuously. 
By using ruthenium complexes with a related chelating triphosphine ligand, N-triphos (N(CH2PPh2)3), 
Phanopoulos et al. [127] obtained high yields of GVL (77-95%) by using [RuH2(CO)(N-triphos)] as catalyst with 
either NH4PF6 or para-toluenesulfonic acid additives under the following conditions, 160 °C and 65 bar H2. 
A range of palladium complexes as catalysts was proved to be effective for the GVL synthesis under transfer 
hydrogenation using formic acid as hydrogen source and carrying out the reaction at only 5 bar H2 at 80 °C for 5 
h [128]. The best-performing catalyst [Pd(DTBPE)Cl2] (DTBPE=1,2-(bis-di-tert-butylphosphino)-ethane) displayed 
98% GVL yield. In addition, the catalyst could be recycled several times, but showed loss of catalytic activity due 
to the in-situ formation of an inactive Pd-carbonyl and a Pd-hydride dimer complex. Nevertheless, this report 
demonstrates the first use of Pd complexes for these transformations under mild reaction conditions [128]. 
GVL is a promising building block in organic synthesis due to its functional groups and reactivity. Although 
it contains a chiral center, it is usually produced and used in the racemic form because major applications, such 
as fuels or solvents, do not require one specific enantiomer. However, enantiomeric purity is important in the 
fragrance, flavoring and pharmaceutical industries, where a specific enantiomer can present different properties 
[129,130]. 
Starodubtseva et al. [131] studied the conversion of LA and γ-ketoesters derived from LA to enantiopure lactones 
using homogeneous catalysis. LA could be converted to (S)-GVL in moderate yields of 66% with 98.5% ee after 5 
h at 60 °C and 60 bar H2 in ethanol using a Ru-BINAP catalysts prepared in situ and activated with HCl. When 
ethyl levulinate was used as substrate in the same reaction conditions, 95% yield and 99% ee for (S)-GVL was 
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obtained. Using RuCl3–BINAP–HCl catalytic system, 96% (R)-GVL yield and 99% ee was achieved from methyl 
levulinate under similar catalytic conditions [132]. 
Biotransformations can also address the enantiomeric purity request, showing the benefit of mild reaction 
conditions and remarkable chemo-, regio-, and stereoselectivity. Gotz et al. [111] presented a chemo-enzymatic 
reaction sequence for the synthesis of optically pure (S)-GVL (Fig. 12). Initially, LA was esterified with ethanol 
at 70 °C for 16 h in the presence of Amberlyst 15 and MgSO4, resulting in 95% yield of ethyl levulinate. Without 
further purification, isolated ethyl levulinate was reduced by (S)-specific carbonyl reductase from Candida 
parapsilosis (CPCR2) at 30 °C and using isopropanol as co-substrate to produce (S)-ethyl-4-hydroxypentanoate 
(95% of conversion and >99% ee). A subsequent lactonization of (S)-ethyl-4-hydroxypentanoate catalyzed 
by immobilized CalB yielded the desired (S)-GVL (>99% ee) at a reaction temperature of 30 °C. The heterogeneous 
catalyst was easily filtered off, and no further downstream processing was needed. An overall yield 
of approximately 90% (S)-GVL (based on LA) was achieved in this chemo-enzymatic reaction sequence. 
 
 

 
Fig. 12. Chemo-enzymatic route for the synthesis of enantiomerically pure (S)-GVL. 

Source: Authors, adapted from [111]. 

 
2-Methyltetrahydrofuran (2-MTHF)  
2-Methyltetrahydrofuran (2-MTHF) may find use as a fuel and a green alternative solvent to tetrahydrofuran 
(THF) with favorable physical and chemical characteristics, such as higher boiling (80.2 °C) e lower melting (-136.0 
°C) points, higher stability, lower volatility and water immiscibility [7,76,129,133]. The chemical structure of 2-
MTHF is shown in Fig. 13. 
 

 
Fig. 13. Chemical structure of 2-methyltetrahydrofuran (2-MTHF). Source: Authors. 

 
Because of the low melting point and low viscosity (1.85 cp at -70 °C), 2-MTHF is increasingly used 
in organometallic reactions, such as Grignard reaction, low-temperature lithiation, lithium aluminum hydride 
reductions, Reformatsky reaction and metal-catalyzed coupling reactions [7]. For instance, Mondal and Mora 
[134] related a catalyzed Suzuki–Miyaura cross-coupling reaction of acid chlorides and aryl boronic acids to yield 
aryl ketones using 2-MTHF as solvent. The great benefit of the water-immiscible 2-MTHF use was the easy 
isolation of the crude reaction mixture just by separation of 2-MTHF and water layers, followed by the 
evaporation of 2-MTHF. Also, it is important to highlight that 2-MTHF performed better than acetone, toluene, 
DMF, THF, acetonitrile, dichloromethane, PEG-400, isopropanol and a 3:1 mix of 2-MTHF and water. The 2-MTHF 
use in chemical reactions have been extensively reviewed elsewhere [8,133,135]. Besides that, Antonucci et al. 
[136] revealed that 2-MTHF has low toxicity and with a maximum concentration of 2% would not be expected 
to contribute to any toxicity potentially exhibited by an active pharmaceutical ingredient containing this solvent, 
and that is why, it has been approved for use in pharmaceutical chemical processes. 
The synthesis of 2-MTHF from GVL involves a hydrogenation of the carbonyl group to yield the cyclic hemiacetal  
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(5-methyltetrahydrofuran-2-ol), which is in equilibrium with the 4-hydroxylpentanal. Further reduction of the 
remaining carbonyl group affords 1,4-pentanediol and an acid-catalyzed dehydration leads to cyclization of the 
diol by etherification to form 2-MTHF (Fig. 14) [2]. Thermodynamic data showed that the GVL ring-opening to 1,4-
pentanediol is a highly endothermic process at 250 °C (ΔG0 = 70 kJ mol−1) [137]. Therefore, harsher reaction 
conditions are needed to obtain 1,4-pentanediol and consequently, 2-MTHF from GVL, making the process more 
challenging when compared with the GVL synthesis from LA [114]. 
 

 
Fig. 14. Synthesis of 2-MTHF from GVL. Source: Authors, adapted from [2,114]. 

 
The production of 2-MTHF based on GVL as a substrate was investigated by Al-Shaal et al. [76] applying Ru/C 
as catalyst. A full conversion of GVL was obtained in a solvent-free reaction system after 24 h at 190 °C and using 
a H2 pressure of 100 bar with a maximum 2-MTHF yield of 43%. The hydrogenation of GVL to 2-MTHF was coupled 
with the formation of by-products such as 2-butanol, butane, 1,4-pentanediol, 2-pentanol, 1-pentanol, pentane 
and methane (Fig. 15). On the other hand, Zhang et al. [138] using Ni-MoOx/Al2O3 as catalyst found, in addition 
to the 1,4-pentanediol, others by-products such as pentenoic and valeric acids. The maximum 2-MTHF yield 
(31%) was achieved when the reaction conditions were 200 °C, 40 bar H2 during 4 h. It is important to highlight 
that 1,4-pentanediol yield was 68% in this same reaction condition. Du et al. [113] have demonstrated that tuning 
the acidic properties of the catalyst surface alternates the product distribution in the hydrogenation of GVL. The 
catalyst Cu/ZrO2 was significantly modified by calcination in air at different temperatures in the range of 300–
700 °C for 4 h. It was found that the catalyst obtained by 400 °C-calcination can deliver a remarkable 2-MTHF 
yield as high as 91% within 6 h of reaction, using ethanol as solvent and 60 bar H2 at 240 °C. However, the same 
catalyst calcinated at 600 °C resulted in 1,4-pentanediol as the major product (73% yield), while 2-MTHF yield 
was only 20%. 
 

 
Fig. 15. Proposed reaction pathway for the formation of by-products during the synthesis of 2-MTHF from GVL over Ru/C 

catalyst. Source: Authors, adapted from [76]. 
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A direct conversion of LA to 2-MTHF involves several reaction steps, including hydrogenation of LA into GVL; 
further ring-opening to 1,4-pentanediol and final dehydration to afford 2-MTHF. Al-Shaal et al. [76] using a two-
step hydrogenation reaction over Ru/C produced 2-MTHF from LA. The first hydrogenation step, LA was totally 
converted to GVL under 12 bar H2 at 190 °C and 45 min [112]. At the end of this step, the formed water was 
evaporated from the reaction mixture and the catalyst was collected, washed, and dried. This procedure was 
necessary because water resulting from the hydrogenation of LA may inhibit the later dehydration reaction 
of 1,4-pantanediol to 2-MTHF. Thus, the second hydrogenation step was conducted using the dried catalyst and 
the produced GVL applying 100 bar H2 at 190 °C. After 4 h of reaction, 90% conversion of GVL and 61% yield of 2-
MTHF was obtained. 
Novodárszki et al. [139] studied the solvent-free conversion of LA to 2-MTHF over Co/silica catalysts by applying 
a flow-through fixed-bed microreactor. At 200 °C and 30 bar H2 total pressure in the steady state, GVL was 
obtained with 98% yield at full LA conversion. In addition, at temperatures higher than 225 °C, the hydrogenation 
activity was high enough to cleave the GVL ring and obtain 2-MTHF with 70% yield. On the other hand, Xie et al. 
[140] showed that a bimetallic Cu-Ni/Al2O3-ZrO2 catalysts can selectively hydrogenate LA to 2-MTHF using 30 bar 
H2 at 220 °C and 10 h of reaction. It was demonstrated that both Cu:Ni and Al:Zr ratios affected the selectivity 
to 2-MTHF significantly. The bimetallic catalysts containing 10 wt.% Ni and 10 wt.% Cu resulted in 99.8% of 2-
MTHF selectivity at full conversion of LA, when the Al:Zr ratio was 9:1. The outstanding catalytic performance 
of the catalyst was related to its mesoporous structure, the acidic properties of the support and the synergistic 
effect between Cu and Ni. It is also important to note that the catalyst could be reused five times without 
a considerable loss of catalytic activity and selectivity. 
The important role of the solvent is highlighted by several studies. As aforementioned, the transformation of GVL 
into 2-MTHF is reported to be strongly inhibited by water [75]. Obregon et al. [141] proved that 2-MTHF yield 
significantly improves if alcohols are used as solvents instead of water. The authors carried out the one-pot 
hydrogenation of LA to 2-MTHF using non-noble metal catalysts (Ni-Cu/Al2O3) in water, ethanol, 1-butanol and 
2-propanol. The catalysis with Ni/Al2O3 (35 wt.% Ni loading) was dependent on the solvent, being observed the 
best 2-MTHF yield of 45.9% using the 2-propanol in the following conditions: 250 °C, 70 bar H2 and 5 h. 
Meanwhile, Cu/Al2O3 catalyst (35 wt.% Cu loading) with the same solvent resulted in 75% 2-MTHF yield in the 
following conditions: 250 °C, 70 bar H2 and 24 h. Besides that, synergistic effects were observed when bimetallic 
Ni-Cu/Al2O3 catalysts were used, reaching to 56% 2-MTHF yield in 5 h at 250 °C for the optimum Ni/Cu ratio (23 
wt.% Ni loading and 12 wt.% Cu loading). 
The role of the hydrogen source on the selective production of GVL and 2-MTHF from LA was investigated by 
Obregon et al. [114] using three different solvents (1,4-dioxane, 1-butanol and 2-propanol) under reactive H2 
and inert N2 atmospheres. The applied reaction conditions (250 °C, 40 bar H2 initial pressure and 5 h reaction 
time) were combined with the use of the following catalysts: Ru/C, Ni/Al2O3 and Ni-Cu/Al2O3. Under N2 
atmosphere, catalytic transfer hydrogenation reactions are the principal source of hydrogen for the 
transformation of LA into GVL or 2-MTHF. Low hydrogen availability provided by a poor hydrogen donor such as 
1,4-dioxane resulted in relatively low LA conversions for the three tested catalysts. The performance of all the 
three catalysts was improved with 2-propanol as the solvent, which is a well-known hydrogen donor [142], 
achieving more than 70% GVL yield. However, these in situ-generated hydrogen sources alone were insufficient 
to convert the highly stable GVL into 2-MTHF (yields were lower than 3%). Under a H2 atmosphere, catalytic 
transfer hydrogenation and hydrogenation with molecular H2 were effective and very fast at producing high 
yields of GVL, up to 85.3% using Ru/C in 1,4-dioxane and 93% using Ru/C in 1-butanol. The combination of both 
sources of hydrogen was indispensable to achieve significant yields of 2-MTHF. For all the catalysts, the highest 
2-MTHF yields were obtained when the best hydrogen donor, 2-propanol, was used as a solvent. Overall, the use 
of Ni-Cu/Al2O3 resulted in 2-MTHF yields of approximately 40% after 5 h and 80% after 20 h. 
 
Impact 
The 2030 Agenda for Sustainable Development, adopted by all United Nations Member States in 2015, provides 
a clear guideline towards the economic, social and environmental sustainability. The aforementioned agenda 
established the 17 Sustainable Development Goals (SDGs), which are an urgent call for action by all countries - 
developed and developing - in a global partnership. Among them are those related to the economic growth as 
well as those focused on subjects tackling a climate change and working to preserve our oceans and forests. 
Some of those goals can be accomplished by the integration of Green Chemistry Principles and Biorefinery 
Concept [143]. This work clearly demonstrates that both can be easily integrated and their integration may have 
a clear positive impact on numerous areas of life. Among them are e.g. environment, human health, economics 
and business.  
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In terms of impact of the proposed solutions on environment, are aspects related to the fact that many chemicals 
end up in the environment by intentional release during use (e.g., pesticides), by unintended releases (including 
emissions during manufacturing), or by disposal. Green chemicals either degrade to innocuous products or are 
recovered for further use. Additionally, plants and animals suffer less harm from toxic chemicals in the 
environment. Also, lower potential for global warming, ozone depletion, and smog formation can be achieved 
by the use of green chemistry and biorefinery concept. Furthermore, use of biomass as source of novel chemicals 
allows less chemical disruption of ecosystems as well as contributes to lesser use of landfills, especially hazardous 
waste landfills. 
Hence, this has a direct impact on human health, namely on cleaner air because lesser release of hazardous 
chemicals to air leading to less damage to lungs can be achieved. Also, cleaner water can be expected because 
lesser release of hazardous chemical wastes to water leads to cleaner drinking and recreational water. 
Furthermore, by the implementation of green chemistry principles, an increased safety for workers in the 
chemical industry can be expected since less toxic materials are in use, less personal protective equipment are 
required and less potential for accidents (e.g., fires or explosions) can be foreseen. Consequently, safer consumer 
products of all types can be obtained. In this sense, new, safer products will become available for purchase and 
some of those commodities will be made with less waste or some products (i.e., pesticides, cleaning products) 
will be replacements for less safe products. 
Finally, the above-mentioned aspect has a direct impact on economy and business because higher yields for 
chemical reactions can be attained due to consuming smaller amounts of feedstock to obtain the same amount 
of product. Due to less synthetic steps, often allowing faster manufacturing of products, increasing plant 
capacity, and saving energy and water, economy of the process is definitively more favorable. At the same time, 
waste reduction, elimination costly remediation, hazardous waste disposal, and end-of-the-pipe treatments is 
additional economic benefit for the process. The use of waste as new feedstock allow replacement 
of a purchased feedstock contributing to favorable economics of these new businesses. In addition, due to better 
performance, less substrates are needed to achieve the same function. Furthermore, reduced manufacturing 
plant size or footprint through increased throughput is additional impact on economics of the process.  
Therefore, the use of biomass processed according to the green chemistry principles demonstrates a great 
potential for different areas with a positive impact on society. 
 
Conclusions  
The development and usage of greener solvents are topics emerging in the recent years, due to the increasing 
concerns about pollution and climate changes. In this context, more sustainable solvents coming from natural 
sources can also reduce the dependence of petrochemicals that are harmful, toxic, and environmentally 
damaging. The literature is full of examples of methods for the biomass conversion into chemicals and, in many 
cases, the authors claimed for a synthesis of they as potential green solvents and building blocks. However, there 
are controversies in the use of hazardous and petrochemical derived solvents and catalysts during these 
compounds obtaining. Among the various technologies described, the ideal in the green chemistry concept 
would be the use of residual biomass combined with heterogeneous recyclable catalysts and renewable solvents. 
The successful use of economically and environmentally sustainable solvents depends not only on the source 
of them but also on their properties to facilitate product/catalyst isolation and reaction workups, improving 
in reaction yields and reduction of environmental issues. 
 
Conflict of interest  
There are no conflicts to declare. 
 
Acknowledgments  
This research was supported by the Fundação para a Ciência e a Tecnologia (FCT, Portugal) through grant 
IF/00471/2015 (RML). D.M.K. and L.P.D. are grateful to CAPES and CNPq (Brazil) for providing scholarships to 
carry out their graduate studies. 
 
References 
[1] Farrán A, Cai C, Sandoval M, Xu Y, Liu J, Hernáiz J, Linhardt RJ. Green solvents in carbohydrate chemistry: 
from raw materials to fine chemicals. Chemical Reviews 115 (2014), 6811–6853. 
[2] Geilen FMA, Engendahl B, Harwardt A, Marquardt W, Klankermayer J, Leitner W. Selective and flexible 
transformation of biomass-derived Platform chemicals by a multifunctional catalytic system. Angewandte 
Chemie 122 (2010), 5642–5646. 
 



Acta Innovations  2020  no. 35: 29-56  51 

 

 

https://doi.org/10.32933/ActaInnovations.35.3  ISSN 2300-5599   2020 RIC Pro-Akademia – CC BY 

 

[3] Alonso DM, Bond JQ, Dumesic JA. Catalytic conversion of biomass to biofuels. Green Chemistry 12 (2010), 
1493–1513. 
[4] Climent MJ, Corma A, Iborra S. Conversion of biomass platform molecules into fuel additives and liquid 
hydrocarbon fuels. Green Chemistry 16 (2013), 516–547. 
[5] Werpy T, Peterson G. Top Value Added Chemicals from Biomass Volume I — Results of Screening for 
Potential Candidates from Sugars and Synthesis Gas Top Value Added Chemicals From Biomass Volume I : Results 
of Screening for Potential Candidates. (2004), http://www.osti.gov/bridge%0AAvailable. 
[6] Bozell JJ, Petersen GR. Technology development for the production of biobased products from biorefinery 
carbohydrates — the US Department of Energy’s “Top 10” revisited. Green Chemistry Critical Reviews 12 (2010), 
539–554. 
[7] Aycock DF. Solvent Applications of 2-Methyltetrahydrofuran in organometallic and biphasic reactions. 
Organic Process & Development 11 (2007), 156–159. 
[8] Hooshmand SE, Heidari B, Sedghi R, Varma RS. Recent advances in the Suzuki–Miyaura cross-coupling 
reaction using efficient catalysts in eco-friendly media. Green Chemistry 21 (2018), 381–405. 
[9] Jin S, Byrne F, Mcelroy CR, Sherwood J, Clark JH, Hunt AJ. Challenges in the development of bio-based 
solvents: a case study on methyl (2,2-dimethyl-1,3-dioxolan-4-yl) methyl carbonate as an alternative aprotic 
solvent. Faraday Discussions (2017), 1-8. 
[10] Clarke CJ, Tu W, Levers O, Bro A, Hallett JP. Green and sustainable solvents in chemical processes. Chemical 
Reviews 118 (2017), 747–800. 
[11] Welton T. Solvents and sustainable chemistry. Proceedings Royal Society A 471 (2015), 1–26. 
[12] Lomba L, Zuriaga E, Giner B. Solvents derived from biomass and their potential as green solvents. Current 
Opinion in Green and Sustainable Chemistry 18 (2019), 51–56. 
[13] Sheldon RA. Green chemistry and resource efficiency: towards a green economy. Green Chemistry 18 
(2016), 1–10. 
[14] George A, Brandt A, Zahari SMSNS, Klein-Marcuschamer D, Parthasarathi R, Sun N, Sathitsuksanoh N, Shi J, 
Stavila V, Tran K, Singh S, Holmes B, Welton T, Simmons BA, Hallett JP. Design of low-cost ionic liquids for 
lignocellulosic biomass pretreatment. Green Chemistry 17 (2015), 1728–1734. 
[15] Brandt-Talbot, A, Florence JV, Gschwend PSF, Lammensb TM, Tana B, Wealea J, Hallett JP. An economically 
viable ionic liquid for the fractionation of lignocellulosic biomass. Green Chemistry 19 (2017), 3078–3102. 
[16] Meramo-Hurtado SI, Ojeda KA, Sanchez-Tuiran E. Environmental and safety assessments of industrial 
production of levulinic acid via acid-catalyzed dehydration. ACS Omega 4 (2019), 22302–22312. 
[17] Behr A, Eilting J, Irawadi K, Leschinski J, Lindner F. Improved utilisation of renewable resources: New 
important derivatives of glycerol. Green Chemistry 10 (2008), 13–30. 
[18] Nda-Umar UI, Ramli I, Taufiq-Yap YH, Muhamad EN. An overview of recent research in the conversion of 
glycerol into biofuels, fuel additives and other bio-based chemicals. Catalysts 9 (2019), 1–47. 
[19] Jiang XC, Zhou CH, Tesser R, Serio MD, Tong DS. Coking of catalysts in catalytic glycerol dehydration to 
acrolein. Industrial & Engineering Chemistry Research 57 (2018), 10736–10753. 
[20] Beatriz A, Araújo YJK, Lima P. Glicerol: Um breve histórico e aplicação em sínteses estereosseletivas. 
Química Nova 34 (2011), 306–319. 
[21] Sivasankaran C, Ramanujam PK, Mani B, Balasubramanian J. Recent progress on transforming crude glycerol 
into high value chemicals : a critical review. Biofuels 7269 (2016), 309–314. 
[22] Lari GM, Pastore G, Haus M, Ding Y, Papadokonstantakis S, Mondelli C, Pérez-Ramírez J. Environmental and 
economical perspectives of a glycerol biorefinery. Energy and Environmental Science 11 (2018), 1012–1029. 
[23] Cintas P, Tagliapietra S, Gaudino EC, Palmisano G, Cravotto G. Glycerol: solvent and building block of choice 
for microwave and ultrasound irradiation procedures. Green Chemistry 16 (2014), 1056–1065. 
[24] Wolfson A, Dlugy C, Shotland Y, Tavor D. Glycerol as solvent and hydrogen donor in transfer hydrogenation 
– dehydrogenation reactions. Tetrahedron Letters 50 (2009), 5951–5953. 
[25] Gu Y, Azzouzi A, Pouilloux Y, Jérôme F, Barrault J. Heterogeneously catalyzed etherification of glycerol: New 
pathways for transformation of glycerol to more valuable chemicals. Green Chemistry 10 (2008), 164–167. 
[26] Gaudin P, Jacquot R, Marion P, Pouilloux Y, Jérôme F. Acid-catalyzed etherification of glycerol with long-
alkyl-chain alcohols. ChemSusChem 4 (2011), 719–722. 
[27] Gu Y, Jérôme F. Glycerol as a sustainable solvent for green chemistry. Green Chemistry 12 (2010), 1127–
1138. 
[28] Gu Y, Barrault J, Jerome F. Glycerol as an efficient promoting medium for organic. Advanced Synthesis & 
Catalysis 350 (2008), 2007–2012. 
[29] Radatz CS, Silva RB, Perin G, Lenardão EJ, Jacob RG, Alves D. Catalyst-free synthesis of benzodiazepines and 
benzimidazoles using glycerol as recyclable solvent. Tetrahedron Letters 52 (2011), 4132–4136. 



Acta Innovations  2020  no. 35: 29-56  52 

 

 

https://doi.org/10.32933/ActaInnovations.35.3  ISSN 2300-5599   2020 RIC Pro-Akademia – CC BY 

 

[30] Azua A, Mata JA, Peris E. Iridium NHC based catalysts for transfer hydrogenation processes using glycerol 
as solvent and hydrogen donor. Organometallics 30 (2011), 5532–5536. 
[31] Meyer TH, Chesnokov GA, Ackermann L. Cobaltaelectro-Catalyzed C–H activation in biomass-derived 
glycerol: powered by renewable wind and solar energy. ChemSusChem 13 (2020), 668-671. 
[32] Sauermann N, Meyer TH, Qiu Y, Ackermann L. Electrocatalytic C − H Activation. ACS Catalysis 8 (2018), 
7086−7103. 
[33] Li P, Wang Y, Hou Q, Liu H, Lei H, Jian B, Li X. Preparation of cellulose nanofibrils from okara by high pressure 
homogenization method using deep eutectic solvents. Cellulose 27 (2020), 2511-2520. 
[34] González-Rivera J, Husanu E, Mero A, Duce C, Tinè MR, Felicia D, Christian S, Guazzelli L. Insights into 
microwave heating response and thermal decomposition behavior of deep eutectic solvents. Journal of 
Molecular Liquids (2019), 112357. 
[35] Balaraman HB, Rathnasamy SK. High selective purification of IgY from quail egg : Process design and 
quantification of deep eutectic solvent based ultrasound assisted liquid phase microextraction coupled with 
preparative chromatograph. International Journal of Biological Macromolecules 146 (2020), 253–262. 
[36] Kurtulba E, Bilgin M, Makris DP, Selin Ş. Citric acid-based deep eutectic solvent for the anthocyanin recovery 
from Hibiscus sabdariffa through microwave-assisted extraction. Biomass Conversion and Biorefinery (2020), 
https://doi.org/10.1007/s13399-020-00606-3. 
[37] Liu C, Si C, Wang G, Jia H, Ma L. A novel and efficient process for lignin fractionation in biomass-derived 
glycerol-ethanol solvent system. Industrial Crops & Products 111 (2018), 201–211. 
[38] Díaz-Álvarez AE, Francos J, Lastra-Barreira B, Crochet P, Cadierno V. Glycerol and derived solvents: New 
sustainable reaction media for organic synthesis. Chemical Communications (2011), 6208–6227. 
[39] Wolfson A, Dlugy C, Shotland Y. Glycerol as a green solvent for high product yields and selectivities. 
Environmental Chemistry Letters 5 (2007), 67–71. 
[40] Sanseverino AM. Microondas em síntese orgânica. Química Nova 25 (2002), 660–667. 
[41] Lidstrom P, Tierney J, Wathey B, Westman J. Microwave assisted organic synthesis-a review. Tetrahedron 
57 (2001), 9225–9283. 
[42] Estevez R, Lopez-Pedrajas S, Luna D, Bautista FM. Microwave-assisted etherification of glycerol with tert-
butyl alcohol over amorphous organosilica-aluminum phosphates. Applied Catalysis B: Environmental 213 
(2017), 42–52. 
[43] Quispe CAG, Coronado CJR, Carvalho JA. Glycerol: Production, consumption, prices, characterization and 
new trends in combustion. Renewable and Sustainable Energy Reviews 27 (2013), 475–493. 
[44] Sutter M, Da Silva E, Duguet N, Raoul Y, Me E, Lemaire M. Glycerol Ether Synthesis : A Bench Test for Green 
Chemistry Concepts and Technologies. Chemical Reviews 115 (2015), 8609−8651. 
[45] Anitha M, Kamarudin SK, Kofli NT. The potential of glycerol as a value-added commodity. Chemical 
Engineering Journal 295 (2016), 119–130. 
[46] Fan Z, Zhao Y, Preda F, Clacens JM, Shi H, Wang L, Feng X, De Campo F. Preparation of bio-based surfactants 
from glycerol and dodecanol by direct etherification. Green Chemistry 17 (2015), 882–892. 
[47] Jaworski MA, Rodríguez Vega S, Siri GJ, Casella ML, Romero Salvador A, Santos López A. Glycerol 
etherification with benzyl alcohol over sulfated zirconia catalysts. Applied Catalysis A: General 505 (2015), 36–
43. 
[48] Lemos COT, Rade LL, Barrozo MAdS, Cardozo-Filho L, Hori CE. Study of glycerol etherification with ethanol 
in fixed bed reactor under high pressure. Fuel Processing Technology 178 (2018), 1–6. 
[49] Pinto BP, De Lyra JT, Nascimento JAC, Mota CJA. Ethers of glycerol and ethanol as bioadditives for biodiesel. 
Fuel 168 (2016), 76–80. 
[50] Samoilov VO, Ramazanov DN, Nekhaev AI, Maximov AL, Bagdasarov LN. Heterogeneous catalytic conversion 
of glycerol to oxygenated fuel additives. Fuel 172 (2016), 310–319. 
[51] Viswanadham N, Saxena SK. Etherification of glycerol for improved production of oxygenates. Fuel 103 
(2013), 980–986. 
[52] Fang W, Wang S, Liebens A, De Campo F, Xu H, Shen W, Pera-Titus M, Clacens JM. Silica-immobilized 
Aquivion PFSA superacid: application to heterogeneous direct etherification of glycerol with n-butanol. Catalysis 
Science and Technology 5 (2015), 3980–3990. 
[53] Leal-Duaso A, Pe P, Garcıa I, Pires E, Mayoral A. Glycerol as a source of designer solvents : physicochemical 
properties of low melting mixtures containing glycerol ethers and ammonium salts. PCCP 19 (2017), 28302–
28312. 
 
 
 



Acta Innovations  2020  no. 35: 29-56  53 

 

 

https://doi.org/10.32933/ActaInnovations.35.3  ISSN 2300-5599   2020 RIC Pro-Akademia – CC BY 

 

[54] Ruppert AM, Meeldijk JD, Kuipers BWM, Erné BH, Weckhuysen BM. Glycerol etherification over highly 
active CaO-based materials: New mechanistic aspects and related colloidal particle formation. Chemistry - A 
European Journal 14 (2008), 2016–2024. 
[55] Latyshev NA, Ermakova SP, Ermolenko EV, Imbs AB, Kasyanov SP, Sultanov RM. 1 ‐O‐ alkylglycerols from the 
hepatopancreas of the crab Paralithodes camtschaticus, liver of the squid Berryteuthis magister, and liver of the 
skate Bathyraja parmifera, and their anticancer activity on human melanoma cells. Journal of Food Biochemistry 
43 (2019), 1-7. 
[56] Vinçon-Laugier A, Cravo-Laureau C, Grossi V. Selective preservation among bacterial alkyl glycerol ether 
lipid structures during long term oxic and anoxic incubation. Organic Geochemistry 125 (2018), 24–28. 
[57] Yokota M, Yahagi S, Tokudome Y, Masaki H. Chimyl alcohol suppresses PGE 2 synthesis by human epidermal 
keratinocytes through the activation of PPAR- γ. Journal of Oleo Science 462 (2018), 455–462. 
[58] Leal-Duaso A, Perez P, Mayoral JA, Garc JI, Pires E. Glycerol-derived solvents: synthesis and properties of 
symmetric glyceryl diethers. ACS Sustainable Chemistry & Engineering 15 (2019), 13004–13014. 
[59] Ruppert AM, Parvulescu AN, Arias M, Hausoul PJC, Bruijnincx PCA, Klein Gebbink RJM, Weckhuysen BM. 
Synthesis of long alkyl chain ethers through direct etherification of biomass-based alcohols with 1-octene over 
heterogeneous acid catalysts. Journal of Catalysis 268 (2009), 251–259. 
[60] Sutter M, Dayoub W, Métay E, Raoul Y, Lemaire M. 1-O-alkyl (di)glycerol ethers synthesis from methyl esters 
and triglycerides by two pathways: catalytic reductive alkylation and transesterification/reduction. Green 
Chemistry 15 (2013), 786–797. 
[61] Gonzalez-Arellano C, Grau-Atienza A, Serrano E, Romero AA, Garcia-Martinez J, Luque R. The role of 
mesoporosity and Si/Al ratio in the catalytic etherification of glycerol with benzyl alcohol using ZSM-5 zeolites. 
Journal of Molecular Catalysis A: Chemical 406 (2015), 40–45. 
[62] Cannilla C, Bonura G, Frusteri L, Frusteri F. Batch reactor coupled with water permselective membrane: 
study of glycerol etherification reaction with butanol. Chemical Engineering Journal 282 (2015), 187–193. 
[63] García JI, García-Marín H, Pires E. Glycerol based solvents: Synthesis, properties and applications. Green 
Chemistry 16 (2014), 1007–1033. 
[64] da Silva CRB, Gonçalves VLC, Lachter ER, Mota CJA. Etherification of glycerol with benzyl alcohol catalyzed 
by solid acids. Journal of the Brazilian Chemical Society 20 (2009), 201–204. 
[65] Gaudin P, Jacquot R, Marion P, Pouilloux Y, Jérôme F. Homogeneously-catalyzed etherification of glycerol 
with 1-dodecanol. Catalysis Science and Technology 1 (2011), 616–620. 
[66] Veiga PM, Gomes ACL, de Veloso CO, Henriques CA. Etherification of different glycols with ethanol or 1-
octanol catalyzed by acid zeolites. Molecular Catalysis 458 (2018), 261–271. 
[67] Klepáčová K, Mravec D, Bajus M. Tert-Butylation of glycerol catalysed by ion-exchange resins. Applied 
Catalysis A: General 294 (2005), 141–147. 
[68] Werpy T, Petersen G. Top Value Added Chemicals from Biomass Volume I — Results of Screening for 
Potential Candidates from Sugars and Synthesis Gas Top Value Added Chemicals From Biomass Volume I : Results 
of Screening for Potential Candidates. (2004). 
[69] Zhang J, Wu S, Li B, Zhang H. Advances in the catalytic production of valuable levulinic acid derivatives. 
ChemCatChem 4 (2012), 1230–1237. 
[70] Morone A, Apte M, Pandey RA. Levulinic acid production from renewable waste resources: Bottlenecks, 
potential remedies, advancements and applications. Renewable and Sustainable Energy Reviews 51 (2015), 548–
565. 
[71] Yan K, Jarvis C, Gu J, Yan Y. Production and catalytic transformation of levulinic acid: A platform for speciality 
chemicals and fuels. Renewable and Sustainable Energy Reviews 51 (2015), 986–997. 
[72] Xu X, Zhang X, Zou W, Yue H, Tian G, Feng S. Conversion of carbohydrates to methyl levulinate catalyzed by 
sulfated montmorillonite. Catalysis Communications 62 (2015), 67–70. 
[73] Rackemann DW, Doherty WOS, Crops T. The conversion of lignocellulosics to levulinic acid. Biofuels, 
bioproducts & Biorefining 5 (2011), 198-214. 
[74] Runge T, Zhang C. Two-stage acid-catalyzed conversion of carbohydrates into levulinic acid. Industrial & 
Engineering Chemistry Research 51,(2012), 3265–3270. 
[75] Alonso DM, Wettstein SG, Dumesic JA. Gamma-valerolactone, a sustainable platform molecule derived 
from lignocellulosic biomass. Green Chemistry 15 (2013), 584–595. 
[76] Al-Shaal MG, Dzierbinski A, Palkovits R. Solvent-free γ-valerolactone hydrogenation to 2-
methyltetrahydrofuran catalysed by Ru/C: a reaction network analysis. Green Chemistry 16 (2014), 1358–1364. 

[77] Deng L, Li J, Lai D, Fu Y, Guo Q. Catalytic conversion of biomass-derived carbohydrates into -valerolactone 
without using an external H2 supply. Angewandte Chemie 48 (2009), 6529–6532. 
 



Acta Innovations  2020  no. 35: 29-56  54 

 

 

https://doi.org/10.32933/ActaInnovations.35.3  ISSN 2300-5599   2020 RIC Pro-Akademia – CC BY 

 

[78] Jiang Y, Yang L, Bohn CM, Li G, Han D, Mosier NS, Miller JT, Kenttämaa HI, Abu-Omar MM. Speciation and 
kinetic study of iron promoted sugar conversion to 5-Hydroxymethylfurfural (HMF) and levulinic acid (LA). 
Organic Chemistry Frontiers 2 (2012), 1388–1396. 
[79] Wang K, Ye J, Zhou M, Liu P, Liang X, Xu J. Selective conversion of cellulose to levulinic acid and furfural in 
sulfolane/water solvent. Cellulose 24 (2017), 1383–1394. 
[80] Han Y, Ye L, Gu X, Zhu P, Lu X. Lignin-based solid acid catalyst for the conversion of cellulose to levulinic acid 
using γ-valerolactone as solvent. Industrial Crops & Products 127 (2019), 89–93. 
[81] Tiong YW, Yap CL, Gan S, Soo W, Yap P. Conversion of biomass and its derivatives to levulinic acid and 
levulinate esters via ionic liquids. Industrial & Engineering Chemistry Research 57 (2018), 4749–4766. 
[82] Ren H, Girisuta B, Zhou Y, Liu L. Selective and recyclable depolymerization of cellulose to levulinic acid 
catalyzed by acidic ionic liquid. Cabohydrate Polymers 117 (2015), 569–576. 
[83] Kumar VB, Pulidindi IN, Mishra RK, Gedanken A. Development of Ga salt of molybdophosphoric acid for 
biomass conversion to levulinic acid. Energy & Fuels 30 (2016), 10583–10591. 
[84] Chen SS, Yu IKM, Tsang DCW, Yip ACK, Khan E, Wang L, Ok YS, Poon CS. Valorization of cellulosic food waste 
into levulinic acid catalyzed by heterogeneous Brønsted acids Temperature and solvent effects. Chemical 
Engineering Journal 327 (2017), 328–335. 
[85] Kumar S, Ahluwalia V, Kundu P, Sangwan RS, Kansal SK, Runge TM, Elumalai S. Improved levulinic acid 
production from agri-residue biomass in biphasic solvent system through synergistic catalytic effect of acid and 
products. Bioresource Technology 251 (2018), 143–150. 
[86] Kang S, Yu J. An intensified reaction technology for high levulinic acid concentration from lignocellulosic 
biomass. Biomass and Bioenergy 95 (2016), 214–220. 
[87] Saravanamurugan S, Buu ONV, Riisager A. Conversion of mono- and disaccharides to ethyl levulinate and 
ethyl pyranoside with sulfonic acid-functionalized ionic liquids. ChemSusChem 4 (2011), 723–726. 
[88] Jeong H, Park S-Y, Ryu G-H, Choi J-H, Kim J-H, Choi W-S, Lee SM, Choi JW, Choi I-G Catalytic conversion of 
hemicellulosic sugars derived from biomass to levulinic acid. Catalysis Communications 117 (2018), 19–25. 
[89] Kang S, Yu J. Maintenance of a highly active solid acid catalyst in sugar beet molasses for levulinic acid 
production. Sugar Techonology 20 (2018), 182–193. 
[90] Signoretto M, Taghavi S, Ghedini E, Menegazzo F. Catalytic Production of Levulinic Acid (LA) from Actual 
Biomass. Molecules 24 (2019), 2760–2780. 
[91] Ya’aini N, Amin NAS, Asmadi M. Optimization of levulinic acid from lignocellulosic biomass using a new 
hybrid catalyst. Bioresource Technology 116 (2012), 58–65. 
[92] Li X, Lei T, Wang Z, Li X, Wen M, Yang M, Chen G, He X, Xu H, Guan Q, Li Z. Catalytic pyrolysis of corn straw 
with magnetic solid acid catalyst to prepare levulinic acid by response surface methodology. Industrial Crops & 
Products 116 (2018), 73–80. 
[93] Lomba L, Giner B, Bandres I, Lafuente C, Rosa Pino M. Physicochemical properties of green solvents derived 
from biomass. Green Chemistry 13 (2011), 2062–2070. 
[94] Démolis A, Essayem N, Rataboul F. Synthesis and applications of alkyl levulinates. ACS Sustainable Chemistry 
& Engineering 2 (2014), 1338–1352. 
[95] Girisuta B, Heeres HJ. Levulinic acid from biomass: synthesis and applications. in Fang Z, Smith Jr. R, Qi X. 
(Eds.) Production of Platform Chemicals from Sustainable Resources, Springer, Singapore (2017), 143–169. 
[96] Marcel R, Durillon T, Djakovitch L, Fache F, Rataboul F. First example of the use of biosourced alkyl 
levulinates as solvents for synthetic chemistry: application to the heterogeneously catalyzed heck coupling. 
ChemistrySelect 4 (2019), 3329–3333. 
[97] Di X, Zhang Y, Fu J, Yu Q, Wang Z, Yuan Z. Biocatalytic upgrading of levulinic acid to methyl levulinate in 
green solvents. Process Biochemistry 81 (2019), 33–38. 
[98] Bosilj M, Schmidt J, Fischer A, White RJ. One pot conversion of glucose to ethyl levulinate over a porous 
hydrothermal acid catalyst in green solvents. RSC Advances 9 (2019), 20341–20344. 
[99] Yang J, Ao Z, Wu H, Zhang S, Chi C, Hou C. Waste paper-derived magnetic carbon composite : A novel eco- 
friendly solid acid for the synthesis of n-butyl levulinate from furfuryl alcohol. Renewable Energy 146 (2020), 
477–483. 
[100] Feng J, Zhang L, Jiang J, Shupe TF, Pan H, Hse C. Directional synergistic conversion of lignocellulosic 
biomass with matching-solvents for added-value chemicals. Green Chemistry 21 (2019), 4951–4957. 
[101] Liang X, Fu Y, Chang J. Sustainable production of methyl levulinate from biomass in ionic liquid-methanol 
system with biomass-based catalyst. Fuel 259 (2020), 116246. 
[102] Guan Q, Lei T, Wang Z, Xu H, Lin L, Chen G, Li X, Li Z. Preparation of ethyl levulinate from wheat straw 
catalysed by sulfonate ionic liquid. Industrial Crops & Products 113 (2018), 150–156. 
 



Acta Innovations  2020  no. 35: 29-56  55 

 

 

https://doi.org/10.32933/ActaInnovations.35.3  ISSN 2300-5599   2020 RIC Pro-Akademia – CC BY 

 

[103] Sah PTP, Ma S-Y Levulinic acids and its esters. Journal of American Chemical Society 52 (1930), 4880–4883. 
[104] Schuette HA, Cowley MA. The vapor pressures of its Alkyl Esters. Journal of American Chemical Society 53 
(1931), 3485–3489. 
[105] Ferrer B, Prats LG, Company CE, Boliart JC. Degreasing compositions derived from levulinic acid (A 
compound obtainable from biomass) and process for degrasing metal surfaces. (2013), WO2013000998A1. 

[106] Horvath IT, Mehdi H, Fábos V, Boda L, Mika LT. -Valerolactone — a sustainable liquid for energy and 
carbon-based chemicals. Green Chemistry 10 (2008), 238-242. 
[107] Strappaveccia G, Ismalaj E, Petrucci C, Lanari D, Marrocchi A, Drees M, Facchetti A, Vaccaro L. A biomass-
derived safe medium to replace toxic dipolar solvents and access cleaner Heck coupling reactions. Green 
Chemistry 17 (2015), 365–372. 
[108] Abdelrahman OA, Heyden A, Bond JQ. Analysis of kinetics and reaction pathways in the aqueous-phase 
hydrogenation of levulinic acid To Form γ‑Valerolactone over Ru/C. ACS Catalysis 4 (2014), 1171–1181. 
[109] Cui J, Tan J, Deng T, Cui X, Zheng H, Zhu Y, Li Y. Direct conversion of carbohydrates to γ-valerolactone 
facilitated by solvent effect. Green Chemistry 17 (2015), 3084–3089. 
[110] Bozell JJ, Moens L, Elliott DC, Wang Y, Neuenscwander GG, Fitzpatrick SW, Bilski RJ, Jarnefeld JL. 
Production of levulinic acid and use as a platform chemical for derived products. Resources, Conservation and 
Recycling 28 (2000), 227–239. 
[111] Götz K, Liese A, Ansorge-Schumacher M, Hilterhaus L. A chemo-enzymatic route to synthesize (S)-γ-
valerolactone from levulinic acid. Applied Microbiology and Biotechnology 97 (2013), 3865–3873. 
[112] Al-Shaal MG, Wright WRH, Palkovits R. Exploring the ruthenium catalysed synthesis of γ-valerolactone in 
alcohols and utilisation of mild solvent-free reaction conditions. Green Chemistry 14 (2012), 1260–1263. 
[113] Du X-L, Bi Q-Y, Liu Y-M, Cao Y, He H-Y, Fan K-N. Tunable copper-catalyzed chemoselective hydrogenolysis 
of biomass-derived γ-valerolactone into 1,4-pentanediol or 2-methyltetrahydrofuran. Green Chemistry 14 
(2012), 935–939. 
[114] Obregon I, Gandarias I, Al-Shaal MG, Mevissen C, Arias PL, Palkovits R. The role of the hydrogen source on 
the selective production of g-valerolactone and 2-methyltetrahydrofuran from levulinic acid. ChemSusChem 9 
(2016), 2488–2495. 
[115] Chia M, Dumesic JA. Liquid-phase catalytic transfer hydrogenation and cyclization of levulinic acid and its 
esters to c-valerolactone over metal oxide catalysts. Chemical Communications 47 (2011), 12233–12235. 
[116] Fábos V, Mika LT, Horváth IT. Selective conversion of levulinic and formic acids to γ‑ valerolactone with 
the shvo catalyst. Organometallics 33 (2014), 181–187. 
[117] Son PA, Nishimura S, Ebitani K. Production of y-valerolactone from biomass- derived compounds using 
formic acid as a hydrogen source over supported metal catalysts in water solvent. RSC Advances 4 (2014), 10525–
10530. 
[118] Wainwright MS, Ahn T, Trimm DL, Cant NW. Solubility of hydrogen in alcohols and esters. Journal of 
Chemistry & Engineering Data 24 (1987), 22–24. 
[119] Purwanto RM, Deshpande RM, Chaudhari RV, Delmas H. Solubility of hydrogen, carbon Monoxide, and 1-
octene in various solvents and solvent mixtures. Journal of Chemistry & Engineering Data 9568 (1996), 1414–
1417. 
[120] Shimizu K, Kanno S, Kon K. Hydrogenation of levulinic acid to γ-valerolactone by Ni and MoOx co-loaded 
carbon catalysts. Green Chemistry 16 (2014), 3899–3903. 
[121] Yi Z, Hu D, Xu H, Wu Z, Zhang M, Yan K. Metal regulating the highly selective synthesis of gamma-
valerolactone and valeric biofuels from biomass-derived levulinic acid. Fuel 259 (2020), 3–6. 
[122] Liu Z, Yang Z, Wang P, Yu X, Wu Y, Wang H, Liu Z. Co-catalyzed hydrogenation of levulinic acid to γ-
valerolactone under atmospheric pressure. ACS Sustainable Chemistry & Engineering 7 (2019), 18236–18241. 
[123] Murugesan K, Alshammari AS, Sohail M, Jagadeesh RV. Levulinic acid derived reusable cobalt-
nanoparticles-catalyzed sustainable synthesis of γ-valerolactone. ACS Sustainable Chemistry & Engineering 7 
(2019), 14756–14764. 
[124] Hegner J, Pereira KC, Deboef B, Lucht BL. Conversion of cellulose to glucose and levulinic acid via solid-
supported acid catalysis. Tetrahedron Letters 51 (2010), 2356–2358. 
[125] Choudhary V, Mushrif SH, Ho C, Anderko A, Nikolakis V, Marinkovic NS, Frenkel AI, Sandler SI, Vlachos DG. 
Insights into the interplay of lewis and brønsted acid catalysts in glucose and fructose conversion to 
5‑(Hydroxymethyl)furfural and levulinic acid in aqueous media. Journal of the American Chemical Society 135 
(2013), 3997–4006. 
[126] Mellmer MA, Alonso M, Luterbacher JS, Marcel J, Gallo R, Dumesic JA. Effects of γ-valerolactone in 
hydrolysis of lignocellulosic biomass to monosaccharides. Green Chemistry 16 (2014), 4659–4662. 
 



Acta Innovations  2020  no. 35: 29-56  56 

 

 

https://doi.org/10.32933/ActaInnovations.35.3  ISSN 2300-5599   2020 RIC Pro-Akademia – CC BY 

 

[127] Phanopoulos A, White AJP, Long NJ, Miller PW. Catalytic transformation of levulinic acid to 2‑ 
methyltetrahydrofuran using ruthenium −N‑ triphos complexes. ACS Catalysis 5 (2015), 2500–2512. 
[128] Ortiz-Cervantes C, Flores-Alamo M, García JJ. Hydrogenation of biomass-derived levulinic acid into γ ‑ 
valerolactone catalyzed by palladium complexes. ACS Catalysis 5 (2015), 1424−1431. 
[129] Omoruyi U, Page S, Hallett J, Miller PW. Homogeneous catalyzed reactions of levulinic acid: to g- 
valerolactone and beyond. ChemSusChem 9 (2016), 1–12. 
[130] Stangeland EL, Sammakia T. Use of Thiazoles in the Halogen Dance Reaction : Application to the Total 
Synthesis of WS75624 B. Journal of Organic Chemistry 69 (2004), 2381–2385. 
[131] Starodubtseva EV, Turova OV, Vinogradov MG, Gorshkova LS, Ferapontov VA. Enantioselective 
hydrogenation of levulinic acid esters in the presence of the Ru II — BINAP — HCl catalytic system. Russian 
Chemical Bulletin, International Edition 54 (2005), 2374–2378. 
[132] Starodubtseva EV, Turova OV, Vinogradov MG, Gorshkova LS, Ferapontov VA, Struchkova MI. A 
convenient route to chiral g-lactones via asymmetric hydrogenation of g-ketoesters using the RuCl3 – BINAP – 
HCl catalytic system. Tetrahedron 64 (2008), 11713–11717. 
[133] Pace V, Hoyos P, Castoldi L, de María PD, Alcantara AR. 2-Methyltetrahydrofuran (2-MeTHF): A biomass-
derived solvent with broad application in organic chemistry. ChemSusChem 5 (2012), 1369–1379. 
[134] Mondal M, Bora U. Eco-friendly Suzuki–Miyaura coupling of arylboronic acids to aromatic ketones 
catalyzed by the oxime-palladacycle in biosolvent 2-MeTHF. New Journal of Chemistry 40 (2016), 3119–3123. 
[135] Khoo HH, Wong LL, Tan J, Isoni V, Sharratt P. Resources, Conservation and Recycling Synthesis of 2-methyl 
tetrahydrofuran from various lignocellulosic feedstocks: Sustainability assessment via LCA. Resources, 
Conservation & Recycling, 95 (2015), 174–182. 
[136] Antonucci V, Coleman J, Ferry JB, Johnson N, Mathe M, Scott JP. Toxicological assessment of 2-
methyltetrahydrofuran and cyclopentyl methyl ether in support of their use in pharmaceutical chemical process 
development. Organic Process, Research & Development 15 (2011), 939–941. 
[137] Serrano-Ruiz JC, West RM, Dumesic JA. Catalytic conversion of renewable biomass resources to fuels and 
chemicals. Annual Review of Chemical and Biomolecular Engineering 1 (2010), 79–100. 
[138] Zhang G, Li W, Fan G, Yang L, Li F. Controlling product selectivity by surface defects over MoOx-decorated 
Ni-based nanocatalysts for c-valerolactone hydrogenolysis. Journal of Catalysis 379 (2019), 100–111. 
[139] Novodárszki G, Solt HE, Valyon J, Lónyi F, Hancsók J, Deka D, Tubaa R, Mihályi MR. Selective 
hydroconversion of levulinic acid to γ-valerolactone or 2-methyltetrahydrofuran over silica-supported cobalt 
catalysts. Catalysis Science and Technology 9 (2019), 2291–2304. 
[140] Xie Z, Chen B, Wu H, Liu M, Liu H, Zhang J, Yanga G, Han B. Highly efficient hydrogenation of levulinic 
acid into 2-methyltetrahydrofuran over Ni–Cu/Al2O3–ZrO2 bifunctional catalysts. Green Chemistry 21 (2019), 
606–613. 
[141] Ocio A, Arias PL, Obregón I, Gandarias I, Miletic N. One-pot 2-methyltetrahydrofuran production from 
levulinic acid in green solvents using Ni-Cu/Al2O3 catalysts. ChemSusChem 8 (2015), 3483–3488. 
[142] Gilkey MJ, Xu B. Heterogeneous catalytic transfer hydrogenation as an effective pathway in biomass 
upgrading matthew. ACS Catalysis 6 (2016), 1420–1436. 
[143] Kazmi A. Green chemistry and the biorefinery. in Kazmi A, Shuttleworth P. (Eds.) Economic Utilisation of 
Food Co-Products. RSC, Cambridge UK (2013), 1–24. 
 


